See you next year in Atlanta for ACPA’s 73rd Annual Meeting!

American Cleft Palate–Craniofacial Association’s
72nd Annual Meeting
April 20-25, 2015 - Palm Springs, CA

“Journey to the Oasis - Explore the World of Cleft and Craniofacial Care”

Mark Your Calendar: April 4-9, 2016 Hilton Atlanta, GA

Pre-Conference Symposium
What Is The ‘Ideal’ Treatment Outcome For A Child With A Cleft?
Week at a Glance

SUNDAY
- April 19
 - 4:00PM-7:00PM: ACPA/CPF Presidents’ Welcoming Reception & Pre-Conference Symposium Registration Opens

MONDAY
- April 20
 - 7:30AM-5:30PM: Registration
 - 9:00AM-5:30PM: Pre-Conference Symposium: What is the “Ideal” Treatment Outcome for the Child with a Cleft? (separate registration required)

TUESDAY
- April 21
 - 7:30AM-7:30PM: Registration
 - 8:00AM-11:30AM: Pre-Conference Symposium: What is the “Ideal” Treatment Outcome for the Child with a Cleft? (separate registration required)
 - 8:00AM-12:00PM: ACPA Primer for Cleft Care (separate registration required)
 - 9:00AM-10:00AM: Keynote Address: Harold Slavkin, DDS, Keynote Address: (7:30-9:30)
 - 9:00AM-10:00AM: Opening Ceremony
 - 10:30AM-12:00PM: General Session I
 - 12:30PM-2:00PM: Lunch Break (on your own)
 - 12:30PM-2:00PM: Junior Investigator
 - 10:30AM-11:45AM: General Session II
 - 12:00PM-2:00PM: Annual Awards Luncheon
 - 2:30PM-4:45PM: Discipline Forums
 - 3:00PM-6:30PM: CPCJ Editorial Board
 - 12:00PM-1:30PM: ASCFS Breakfast
 - 11:00AM-12:00PM: ASCFS Business Mtg/Luncheon* (open only to the members of ASCFS)
 - 1:00PM-5:00PM: Poster Session C

WEDNESDAY
- April 22
 - 7:00AM-5:00PM: Registration
 - 7:00AM-7:30AM: Registration
 - 7:30AM-9:00AM: Keynote Address: Harold Slavkin, DDS, Keynote Address: (7:30-9:30)
 - 9:00AM-10:00AM: Opening Ceremony
 - 10:30AM-12:00PM: General Session II
 - 12:30PM-2:00PM: Lunch Break (on your own)
 - 12:30PM-2:00PM: Junior Investigator
 - 10:30AM-11:45AM: General Session III
 - 12:00PM-2:00PM: Annual Awards Luncheon
 - 2:30PM-4:45PM: Discipline Forums
 - 3:00PM-6:30PM: CPCJ Editorial Board
 - 12:00PM-1:30PM: ASCFS Business Mtg/Luncheon* (open only to the members of ASCFS)
 - 1:00PM-5:00PM: Poster Session C

THURSDAY
- April 23
 - 7:00AM-5:00PM: Registration
 - 10:30AM-12:00PM: General Session III
 - 10:30AM-12:00PM: Concurrent Sessions 1
 - 9:00AM-10:00AM: Keynote Address: Harold Slavkin, DDS, Keynote Address: (7:30-9:30)
 - 9:00AM-10:00AM: Opening Ceremony
 - 10:30AM-11:45AM: General Session IV
 - 12:00PM-2:00PM: Annual Awards Luncheon
 - 2:30PM-4:45PM: Discipline Forums
 - 3:00PM-6:30PM: CPCJ Editorial Board

FRIDAY
- April 24
 - 7:00AM-5:00PM: Registration
 - 7:00AM-8:00AM: Posters Sessions – Group 1 (A-J) (separate ticket required)
 - 10:00AM-10:30AM: Study Sessions – Group 1 (A-J) (separate ticket required)
 - 10:30AM-12:00PM: Concurrent Sessions 2
 - 11:00AM-12:00PM: ASCFS Business Mtg/Luncheon* (open only to the members of ASCFS)
 - 1:00PM-5:00PM: Poster Session C

SATURDAY
- April 25
 - 7:00AM-10:00AM: Registration
 - 7:00AM-6:30PM: Poster Session D
 - 10:30AM-12:00PM: Concurrent Sessions 3
 - 11:00AM-12:00PM: ASCFS Business Mtg/Luncheon* (open only to the members of ASCFS)
 - 1:00PM-5:00PM: Poster Session C

Hotel Floor Plan

This Program Belongs to: [ACPA](#)

If found, please return to the ACPA registration desk. Thank you.

Cover artwork designed by Amatullah King, Molly Brewer, and Hillary Jones.
2015 Program Committee
Robert J. Havlik, MD, Chair
Amelia F. Drake, MD
Patricia H. Glick, DMD, MS
Bruce B. Horswell, MD, DDS, MS
John N. Jensen, MD
Joseph E. Losee, MD, ASCFS Liaison
Judy A. Marcieł, MSN, CPNP
Michael S. Nelson, MD
Jamie L. Perry, PhD, CCC-SLP
Patricia A. Severns, MA
Harold C. Slavkin, DDS
Margot B. Stein, PhD
Michael J. VanLue, PhD, CCC-SLP
Amatullah King, Staff Liaison

2015 Local Arrangements Committee
Andrea O. Ray, MD, Chair
Noreen Clarke, MSN, RN
Katrina Dipple, MD, PhD
Aaron M. Tanner, MS, CCC-SLP
Yvonne R. Gutierrez, MD
Council Liaison
Jessica Kokos, Staff Liaison

National Office Staff
Wendy-Jo Toyama, MBA, CAE, ACPA Executive Director
Hillary Jones, Team Services Manager
Amatullah King, Meetings Manager
Jessica Kokos, Meetings Assistant
Stephanie Williamson, MS, CPF Director of Family Services

Annual Meeting Support Team
Tina Feliciano
Chinyere Harris
Sharon Overcash
Debbie Ogle, CPCJ Editorial Assistant
Teri Jordan, CAE, CMP
Allison Smith, CMP, Global Events Managers
Kim Howard, CMP, Global Events Managers
<table>
<thead>
<tr>
<th>Section</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>3-4</td>
</tr>
<tr>
<td>ACPA Officers and Council Members</td>
<td>5</td>
</tr>
<tr>
<td>ACPA Committee Members</td>
<td>6</td>
</tr>
<tr>
<td>CPF Officers, Board of Directors, and Committee Members</td>
<td>7</td>
</tr>
<tr>
<td>Cleft Palate-Craniofacial Journal Editorial Board</td>
<td>8</td>
</tr>
<tr>
<td>ACPA and CPF Past Presidents</td>
<td>9</td>
</tr>
<tr>
<td>ACPA and CPF Awards and Scholarships</td>
<td>9</td>
</tr>
<tr>
<td>2015 Contributions to the Cleft Palate Foundation</td>
<td>10-11</td>
</tr>
<tr>
<td>2014 Contributions to the Cleft Palate Foundation</td>
<td>12-14</td>
</tr>
<tr>
<td>2014 American Cleft Palate-Craniofacial Association Financial Statements</td>
<td>16</td>
</tr>
<tr>
<td>2014 Cleft Palate Foundation Financial Statements</td>
<td>17</td>
</tr>
<tr>
<td>Pre-Conference Symposium I: What is the ‘Ideal’ Treatment Outcome for a Child With a Cleft</td>
<td>18-21</td>
</tr>
<tr>
<td>Symposium Faculty and Disclosures</td>
<td>22-23</td>
</tr>
<tr>
<td>ACPA Primer for Cleft Care Providers</td>
<td>24-25</td>
</tr>
<tr>
<td>72nd Annual Meeting Scientific Program and Abstract Reference</td>
<td>26</td>
</tr>
<tr>
<td>Tuesday, April 21 – Committee Meetings, Welcoming Reception, Eye Openers</td>
<td>26</td>
</tr>
<tr>
<td>Wednesday, April 22 – Keynote Address, General Sessions</td>
<td>27-30</td>
</tr>
<tr>
<td>Thursday, April 23 – Eye Openers, Junior Investigator, General Sessions</td>
<td>30-37</td>
</tr>
<tr>
<td>Discipline Forums, Study Sessions</td>
<td>30-37</td>
</tr>
<tr>
<td>Friday, April 24 – Concurrent General and Specialty Sessions</td>
<td>37-48</td>
</tr>
<tr>
<td>Saturday, April 25 – Concurrent General Sessions</td>
<td>48</td>
</tr>
<tr>
<td>Poster Presentations</td>
<td>49-55</td>
</tr>
<tr>
<td>Abstracts</td>
<td>56-113</td>
</tr>
<tr>
<td>Authors Index</td>
<td>114-117</td>
</tr>
<tr>
<td>Exhibits</td>
<td>118-119</td>
</tr>
<tr>
<td>Summary of Events</td>
<td>120-123</td>
</tr>
<tr>
<td>Hotel Layout</td>
<td>Inside Back Cover</td>
</tr>
</tbody>
</table>
Registration and Information
Your ACPA registration and information desk is located in the Celebrity Ballroom foyer on the ground floor of the Westin Mission Hills Hotel. Days and hours of operation are listed below. A message board has been provided for your convenience. Please check the board periodically for messages from other attendees or important telephone calls. Please have callers leave messages at your room if the messages are not urgent.

Registration Desk Hours

<table>
<thead>
<tr>
<th>Date</th>
<th>Hours of Registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, April 19</td>
<td>4:00PM - 7:00PM</td>
</tr>
<tr>
<td>Monday, April 20</td>
<td>7:30AM - 5:30PM</td>
</tr>
<tr>
<td>Tuesday, April 21</td>
<td>7:30AM - 7:30PM</td>
</tr>
<tr>
<td>Wednesday, April 22</td>
<td>6:30AM - 6:30PM</td>
</tr>
<tr>
<td>Thursday, April 23</td>
<td>6:30AM - 6:00PM</td>
</tr>
<tr>
<td>Friday, April 24</td>
<td>7:00AM - 5:30PM</td>
</tr>
<tr>
<td>Saturday, April 25</td>
<td>7:30AM - 10:00AM</td>
</tr>
</tbody>
</table>

Program, Badge, and Ticket Policy
When you register, you will receive your badge as well as appropriate tickets for social events, eye openers, and study sessions. If you are not attending the social event, please donate your tickets to students and residents. You may leave tickets with ACPA staff at the registration desk.

It is essential that you keep your tickets with you for entrance into each of the above short courses and social events.

Volunteers will take your tickets at the doors. The tickets have cash value and can be purchased but not replaced at the registration desk. We suggest you put your tickets behind your badge in the badge holder.

You must wear your badge at all times during the meeting.
Your badge gains you entrance to the general, concurrent, keynote, and poster sessions of the annual meeting. Special badge markings are needed for the Pre-Conference Symposia. The “BADGE POLICE” will be watching!

One program is provided for each registered attendee. If your program is lost or if additional copies are desired, they may be purchased at the registration desk for $15 each.

Social Packages for Guests
Additional tickets to social events are available at the registration desk. The $135 Social Package includes the Welcoming Reception, the Annual Luncheon, and Friday’s Gala — A Night At The Oasis — held outdoors at the Masters Plaza of the Westin Mission Hills Hotel. Tickets may be purchased separately at $25 for the Welcoming Reception, $35 for the Luncheon, and $75 for the Friday night Gala.

AV Instructions and Speaker Ready Room
Audiovisual Preview
Speakers may preview their presentations in the Celebrity Planners Room located near the Celebrity Ballroom. Look for directional signs in the Celebrity Ballroom Foyer.

General and Concurrent Session speakers should pre-load their PowerPoint presentations at the podium prior to the beginning of their session, e.g., first thing in the morning or during coffee or lunch breaks.

Eye Opener and Study Session speakers are responsible for operating their own AV equipment.

Laser Pointers should be picked up by Session Co-Chairs just prior to their session and returned immediately afterwards to the ACPA Registration Desk.

All speakers must pick up their materials immediately following their presentation. Do not leave them with the technicians. ACPA and the AV staff will not accept responsibility for lost or damaged materials.

Journal Manuscripts
Manuscripts to be submitted to the Cleft Palate-Craniofacial Journal should be left at the registration desk with an ACPA staff member to be given to Dr. Jack C. Yu, Editor.

Poster Sessions, Exhibits and Coffee Breaks
Exhibits and posters will be displayed during the times specified in the Summary of Events. There will be five poster sessions: Poster Sessions A and B will be on Wednesday, Session C on Thursday, and Sessions D and E on Friday. Poster sessions will be held in the Celebrity Patio. All exhibits and coffee breaks will be held in the Celebrity Ballroom Foyer.

Welcome to New Members
Look for the LIGHT BLUE RIBBON affixed to the badge of individuals who have joined ACPA in the past year. Please take a moment to welcome them to ACPA and to introduce them to colleagues. Also, as you meet non-members (blue badges), you might take a moment to discuss the goals and activities of the organization and the benefits of ACPA membership. Membership applications are available at the ACPA/CPF information desk in the Celebrity Ballroom Foyer.

ACPA/CPF Authorized Photographs
Candid photos will be taken throughout the week in which you may be included. It is understood and agreed that these photos may be reprinted in our newsletter, on our website or in other publications. If you do not want your picture used, please inform the ACPA staff at the registration desk.

Unauthorized Recording:
Please Do Not Take Photographs or Otherwise Record Any Meeting Proceedings
Taking photographs, audiotaping, or videotaping any annual meeting proceedings, oral presentations, or on screen images is STRICTLY PROHIBITED. Audience members who attempt to do so will be asked to leave the meeting rooms.

Please be Courteous to Other Attendees
Mobile devices: Turn off – or put in silent mode – your cell phones and/or pagers while sessions are in progress.
Children: Children under 13 years of age are not permitted in lecture areas.

2016 Annual Meeting
April 4-9 2016
ACPA’s 73rd Annual Meeting and Pre-Conference Symposium
Hilton Atlanta Hotel
Atlanta, Georgia
Program Chair: Amelia F. Drake, MD
Educational Objectives
The overall educational objectives of the Annual Meeting are (1) to make concerned professionals aware of new clinical and research information through the organized presentation of original papers and poster sessions, and (2) to provide an opportunity for the involved professionals to update their knowledge and skills of their own and related disciplines through exhibits, video presentations, and focused short courses. Specific educational objectives for each component of the meeting are presented throughout the agenda.

Continuing Education Credits

<table>
<thead>
<tr>
<th>Convention</th>
<th>ASHA CEUs</th>
<th>ACCME Hours</th>
<th>Nursing*</th>
<th>Instructional Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Sessions</td>
<td>0.15 CEU ea</td>
<td>1.5 hours ea</td>
<td>TBD</td>
<td>Variable</td>
</tr>
<tr>
<td>Eye Openers</td>
<td>0.10 CEU ea</td>
<td>1.0 hour ea</td>
<td>TBD</td>
<td>Variable</td>
</tr>
<tr>
<td>Pre-Conference Symposium</td>
<td>0.95 CEUs</td>
<td>9.75 hours</td>
<td>TBD</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

Maximum Available: 3.05 CEUs / 31.00 hours

* This activity has been submitted to North Carolina Nurses Association for approval to award contact hours. North Carolina Nurses Association is accredited as an approver of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.

American Speech-Language-Hearing Association

This program is offered for 3.05 CEUs (Various Levels, Professional Area).

Instructions for ASHA: When you check in to the meeting, you will be given an ASHA participant form and the date and time of your arrival will be noted. Complete the form and return it to an ACPA staff member at the registration desk after you attend your last session. You are also required to complete online evaluation forms (see section to the right) for each component of the meeting for which you are seeking credit (i.e., annual meeting, symposia, study sessions, and eye openers).

Continuing Medical Education:

Accreditation Statement: The American Cleft Palate-Craniofacial Association (ACPA) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

Designation Statement: ACPA designates this educational activity for a maximum of 31.00 AMA PRA Category 1 Credits™. Physicians should only claim credits commensurate with the extent of their participation in the activity.

Instructions for ACCME: When you register, the date and time of your arrival will be noted. At the end of the meeting or time of your departure, you must return the completed continuing education form to an ACPA staff member at the registration desk. You will also need to complete online evaluation forms (see section to the right) for each component of the meeting for which you are seeking credit (i.e., annual meeting, symposia, study sessions, and eye openers). Approximately 4 weeks after the meeting, a continuing education certificate will be mailed to you. If the continuing education form and evaluation forms are not completed, we will not be permitted to award credits.

Online Evaluation Forms: Help us improve future programs while fulfilling requirements to obtain your continuing education credits. Complete the online evaluation form for each component for which you are seeking credit. Links can be found here: http://www.acpa-cpf.org/am-feedback. You will need the registration ID number found on your meeting badge.

Full Disclosure Policy
The American Cleft Palate-Craniofacial Association, in compliance with the Accreditation Council for Continuing Medical Education (ACCME) Standards for Commercial Support, has adopted the following Full Disclosure Policy:

Presentations made at continuing medical educational activities sponsored or jointly sponsored by the American Cleft Palate-Craniofacial Association must include information regarding all commercial or industrial funding, consulting, or equity holdings by the presenters’ author(s) and/or anyone related to the author(s) which could be affected by or could have an effect on the content of the presentation. This information is requested during the abstract submission process and will be disclosed to participants through statements in printed meeting materials and declared by the faculty member at the beginning of his/her presentation.

Faculty Disclosure Statements: It is the policy of ACPA to ensure its programs are fair, balanced, independent, objective, and scientifically rigorous. In support of this policy, ACPA requires that: 1. Trade names are to be avoided during presentations. 2. Presentations made at continuing medical educational activities sponsored or jointly sponsored by ACPA, in compliance with standards for accreditation by ACCME, must include: a. information regarding off-label use(s); b. all commercial or industrial funding, consulting, or equity holdings by the authors of this presentation and/or anyone related to the authors which could be affected by or could have an effect on the content of the presentation. 3. This information will be disclosed to meeting participants through printed materials and must be declared verbally by the presenter at the beginning of the presentation. See Abstracts, page 56, for indication of disclosures, and online at http://meeting.acpa-cpf.org/abstracts-disclosures.html

Disclaimer
The scientific material presented at this meeting has been made available by the American Cleft Palate-Craniofacial Association for educational purposes only. The material is not intended to represent the only, nor necessarily the best, methods or procedures appropriate for the health care situation discussed, but rather is intended to present an approach, view, statement, or opinion of the presenter which may be helpful to others who face similar situations.

The American Cleft Palate-Craniofacial Association disclaims any and all liability and injury or other damage resulting to any individual attending a course and for all claims which may arise out of the use of the techniques demonstrated therein by such individuals, whether these claims shall be asserted by members of the health care professions or any other person.
Officers:

President
Ronald Reed Hathaway, DDS, MS, MS
Cincinnati, OH

President-Elect
Richard E. Kirschner, MD
Columbus, OH

Past President
Helen M. Sharp, PhD
Kalamazoo, MI

Vice President
Robert J. Havlik, MD
Milwaukee, WI

Vice President-Elect
Amelia F. Drake, MD
Chapel Hill, NC

Treasurer
Bernard J. Costello, DMD, MD
Pittsburgh, PA

Communications Officer
Yvonne R. Gutierrez, MD
Los Angeles, CA

Council Members:

Adriane L. Baylis, PhD, CCC-SLP
Columbus, OH (2015)

Patricia H. Glick, DMD, MS
Phoenix, AZ (2015)

Lisa R. David, MD
Winston-Salem, NC (2016)

Iris H. Sageser, RDH, MS
Cincinnati, OH (2016)

Lynn M. Fox, MA, MEd, CCC-SLP
Chapel Hill, NC (2017)

Ana M. Mercado, DMD, PhD
Columbus, OH (2017)

Ex-Officio:

Journal Editor
Jack C. Yu, MD, DMD, MS Ed
Augusta, GA

CPF President
Marilyn A. Cohen, LSLP
Philadelphia, PA

ACPA Executive Director
Wendy-Jo Toyama, MBA, CAE
Chapel Hill, NC
2015 ACPA Committees

Honors and Awards Committee
Ronald P. Strauss, DMD, PhD, Chair
Isaac L. Wornom, III, MD, Co-Chair
Michael J. Buckley, DMD, MS, MBA
Mohammad Mazaheri, MDD, DDS, MSc
Janice R. Rockwood, RN, BSN
Earl J. Seaver, PhD
Helen M. Sharp, PhD, Council Liaison
Jennifer Koksos, Staff Liaison

International Outreach Committee
John A. van Aalst, MD, Chair
Fausto M. Oginni, BChD, FMDCDS, FWACS, Co-Chair
Michael L. Cunningham, MD, PhD
Tambi Braun, SLPD, CCC-SLP
Isaac L. Wornom, III, MD
Wellington J. Davis, MD
Omri Emodi, DMD
Kelly M. Mabry, PhD
Rosario F. Mayro, DDS
Mohammad Mazaheri, MDD, DDO, MSc
Prasad Nalabothu, MDs, FCDF
Albert K. Oh, MD
Sarah E. Reed, MA, CCC-SLP
Gerardo Romeo, DDS, MD
Iris H. Sageser, RDH, MS
Viviana Patricia Saldivia Vargas, Msc
Polepole Tshomba, MD
Libby Wilson, MD
Lynn M. Fox, MA, MDC, CCC-SLP, Council Liaison
Amatullah King, Staff Liaison

Journal Advisory Committee
Peter Marshall Spalding, DDS, MS, MS, Chair
Kathleen A. Kapp-Simon, PhD, Co-Chair
John W. Canady, MD, FACAP, FAP
Jeffrey A. Fearon, MD
Bruce B. Horswell, MD, DMS, MS
Joseph E. losee, MD
Isaac L. Wornom, III, MD
Bernard J. Costello, DMD, MD, FACAP, Council Liaison
Wendy-Jo Toaya, MBA, CAE, Staff Liaison

Local Arrangements Committee 2016
Andrea O. Ray, MD, Chair
Noreen Clarke, MSN, RN
Karina Dipple, MD, PhD
Aaron M. Tanner, MS, CCC-SLP
Yvonne R. Gutierrez, MD, Council Liaison
Jessica Koksos, Staff Liaison

Membership Committee
Seth Weinberg, PhD, Chair
Lisa S. Jacob, DMD, MS, Co-Chair
Sara L. Jacob, DMD, FACP
Michael J. VanLue, DDS
Amatullah King, Staff Liaison

Parameters Committee
Diane L. Mulick-Altuin, MS,CCC-SLP, Chair
Linda D. Vallino, PhD, MD, Co-Chair
Suraya Beiraghi, DDS, MSD
Hillary L. Broder, PhD, MEd
Cathy Conley, BSN
Kristen L. Goerke, DDS, CM
Judith E. Trost-Cardamone, PhD
Sara L. Jacob, DMD
Robert J. Halkil, MD, Council Liaison

Program Committee 2016
Amelia F. Drake, MD, Chair
Patricia H. Glick, DMD, PhD
Bruce B. Horswell, MD, DDS, MS
Joseph E. losee, MD
Michael J. VanLue, DDS
Amatullah King, Staff Liaison

Task Force on Americleft – Orthodontic Group
Ross Eugen Long, Jr., DDS, MS, PhD, Chair
Dana C. Barden, DDS, MDC, PC
Jennifer Fessler, CDT
Patricia H. Glick, DMD, MS
Ronald Reed Hathaway, DDS, MS, MS
Ana M. Mercado, DMD, PhD
Kathleen A. Russell, DDS, MDC
Gunvor Semb, DDS, PhD
William C. Shaw, PhD, MSc, BDO

Task Force on Americleft – Psychosocial
Kathleen A. Kapp-Simon, PhD, Chair
Claudia Crilly Bellucci, MS
Amy L. Conrad, PhD
Canice E. Crerand, PhD
Lisa R. Lepaske, MSW, LSW
Shahedah Moti, MSW, RHJ
Karen W.Y. Wong, MD, MSc, FRCS
Suzanne C. Woodard, MS

Task Force on Americleft – Speech Group
Kathryn L. Chapman, PhD, Chair
Adriane L. Baylis, PhD, CCC-SLP
Kelly Nett Cordero, PhD, CCC-SLP
Angela J. Dixon, MA
Cindy J Dobelsteyn, MSc
Debbie Sell, PhD

ACPA Outcomes Research Evaluation Task Force
Bernard J. Costello, DMD, MD, FACAP
Michael L. Cunningham, PhD
John A. Girotto, MD, MMA, FAAP, FACS
Patricia H. Glick, DMD, PhD
Richard Kirschner, MD
Ross Eugen Long, Jr., DDS, MS, PhD
James J. Cray, Jr., PhD
Cathy Conley, BSN
Kathy L. Chapman, MD
Amatullah King, Staff Liaison

Communications Special Committee
Yvonne R. Gutierrez, MD, Chair
Sara P. Viernes, DDS, Co-Chair
Sara B. Barnhill, MS, CCC-SLP
Christopher M. Discolo, MD
Lauren A. Kilpatrick, MD
Amatullah King, Staff Liaison

Commission on Approval of Teams
David Kuehn, PhD, Chair
Greg Bowden, CFRE
Michael G. Ceder, DDS
Mary Michael E. Cradock, PhD
Jamie S. Ibeling, BS, RDH
Hitesh Kapadia, DDO, PhD
Molie Mulvaney
Pat Ricalde, DDS, MD
Hillary Jones, Staff Liaison

Ethics Committee
Edward A. Daniels, DDS, MR, Co-Chair
Mary Ellen Alexander, RN, MN
Devra B. Becker, MD
Angelo Capozzi, MD, PhD
Noreen Clarke, MSN, RN
Donna R. Fox, PhD
Karla A. Haynes, RN, MPH, MSPH
Angela M. O’Gara, DMD, MS
Nareen Clarke, MSN, RN
Krishna G. Patel, MD, PhD
Andrea O. Ray, MD
Richard J. Redett, MD
Reynaldo D. Riveria, DDS, MS
Howard M. Saal, MD
Rodney E. Schmelzer, MD
Christian J. Vercher, MD
Kristina Wilson, PhD
Richard Kirschner, MD, Council Liaison

Honors and Awards Committee
Ronald P. Strauss, DMD, PhD, Chair
Isaac L. Wornom, III, MD, Co-Chair
Michael J. Buckley, DMD, MS, MBA
Mohammad Mazaheri, MDD, DDO, MSc
Janice R. Rockwood, RN, BSN
Earl J. Seaver, PhD
Helen M. Sharp, PhD, Council Liaison
Jennifer Koksos, Staff Liaison

International Outreach Committee
John A. van Aalst, MD, Chair
Fausto M. Oginni, BChD, FMDCDS, FWACS, Co-Chair
Michael L. Cunningham, MD, PhD
Tambi Braun, SLPD, CCC-SLP
Isaac L. Wornom, III, MD
Wellington J. Davis, MD
Omri Emodi, DMD
Kelly M. Mabry, PhD
Rosario F. Mayro, DDS
Mohammad Mazaheri, MDD, DDO, MSc
Prasad Nalabothu, MDs, FCDF
Albert K. Oh, MD
Sarah E. Reed, MA, CCC-SLP
Gerardo Romeo, DDS, MD
Iris H. Sageser, RDH, MS
Viviana Patricia Saldivia Vargas, Msc
Polepole Tshomba, MD
Libby Wilson, MD
Lynn M. Fox, MA, MDC, CCC-SLP, Council Liaison
Amatullah King, Staff Liaison

Journal Advisory Committee
Peter Marshall Spalding, DDS, MS, MS, Chair
Kathleen A. Kapp-Simon, PhD, Co-Chair
John W. Canady, MD, FACAP, FAP
Jeffrey A. Fearon, MD
Bruce B. Horswell, MD, DMS, MS
Joseph E. losee, MD
Isaac L. Wornom, III, MD
Bernard J. Costello, DMD, MD, FACAP, Council Liaison
Wendy-Jo Toaya, MBA, CAE, Staff Liaison

Local Arrangements Committee 2016
Andrea O. Ray, MD, Chair
Noreen Clarke, MSN, RN
Karina Dipple, MD, PhD
Aaron M. Tanner, MS, CCC-SLP
Yvonne R. Gutierrez, MD, Council Liaison
Jessica Koksos, Staff Liaison

Membership Committee
Seth Weinberg, PhD, Chair
Lisa S. Jacob, DMD, MS, Co-Chair
Dustin S. Burleson, DDS
Sydney C. Butts, MD
2015 Committee Members

Awards Committee
Jerald B. Moon, PhD, Chair
Alexander C. Allori, MD, MPH
Bruce B. Horswell, MD, DDS, MS
Lina M. Moreno, DDS
Jack C. Yu, MD, DMD, MS Ed
Stephanie Williamson, MS, Staff Liaison
Donna Pruzansky Memorial Committee
Sibyl V. Scheve, RN, BSN, Chair
Cassandra L. Aspinall, MSW, LCSW
Dana E. Dickson, RN, BA, CCM
Lora A. Hindenburg, RN, MSN
Elena M. Hopkins, RN, MS, PNP
Dawn A. Leavitt, RN, BSN
Sharon Vargas, RN, BSN
Stephanie Williamson, MS, Staff Liaison
Leadership Award Committee
Mary Ellen Alexander, RN, MN, Chair
Patricia D. Chibbaro, RN, MS, CPNP
Lonny L. Ross, MD, FRCSC
Patricia A. Severns, MA
Aaron M. Tanner, MS, CCC-SLP
Margaret A. Wells-Friedman, MS
Stephen P. Beals, MD, Board Liaison
Stephanie Williamson, MS, Staff Liaison
Management and Finance Committee
Bernard J. Costello, MD, MD, FACS, Chair
Marilyn A. Cohen, LSLP
John A. Girotto, MD, MMA, FAAP, FACS
Ronald Reed Hathaway, DDS, MS, MS
Richard E. Kirschner, MD
Mary M. O’Gara, MA, CCC-SLP
Howard M. Saal, MD
Helen M. Sharp, PhD
Sarah C. Shoaf, Med, DDS, MS, DABO
Bryan J. Williams, DDS, MDS, MEd
Wendy-Jo Toyama, MBA, CAE, Staff Liaison
Publications Committee
Lynn M. Fox, MA, Med, CCC-SLP, Chair
Gregory C. Allen, MD
Sharon Aronovich, DMD
Anne P. Bedwinick, PhD, CCC-SLP
Katrina M. Dipple, MD, PhD
Angela J. Dixon, MA
Robin A. Dyleski, MD
Daniel Jaffers, MD, PhD
Katherine A. Kelly, DDS, PhD, MS
Leanne Magee, PhD
Martha S. Matthews, MD
Albert K. Oh, MD
Carol J. Ritter, RN, BSN
Patricia Schultz, MSN, CPNP
Nichelle Berry Weintraub, MSIE, Board Liaison
Steering Committee
Stephanie Williamson, MS, Staff Liaison
Research Grants Committee
Jamie Perry, PhD, CCC-SLP, Chair
Canice E. Crerand, PhD
Sidney B. Eisig, DDS
Christian Albert El Amm, MD
Olcsana A. Jackson, MD
Mark P. Mooney, PhD
Howard M. Saal, MD, Board Liaison
Stephanie Williamson, MS, Staff Liaison
Scholarship Committee
Virginia A. Hinton, PhD, Chair
Claudia Crilly Bellucci, MS
Richard E. Campbell, DMD, MS
Dianne J. Mullick-Alkuna, MS, CCC-SLP
Earl J. “Gip” Seaver, PhD
Lori Cilley, DO, Board Liaison
Stephanie Williamson, MS, Staff Liaison
Task Force on Adult Care
Ruth Trivelpiece, MD, Chair
Joli C. Choi, DMD, MD
Mary M. Graddock, PhD
Sibyl V. Scheve, RN, BSN
Andrea L. Smith, DDS
Stephen P. Beals, MD, Board Liaison
Stephanie Williamson, MS, Staff Liaison
EDITORIAL BOARD

EDITOR
Jack Yu, MD • Augusta, GA

ASSISTANT EDITOR
Stephen F. Conley, MD, MS • Milwaukee, WI

SECTION EDITORS

ANATOMY/BASIC SCIENCES
Mark Mooney, PhD
Pittsburgh, PA
Gregory M. Cooper, PhD
Pittsburgh, PA

BEHAVIORAL SCIENCES
Sarah R. Baker, BSc(Hons), PhD, C Psychol
Sheffield, United Kingdom
Canice Crerand, PhD
Philadelphia, PA

CRANIOFACIAL SURGERY
Lisa David, MD
Winston-Salem, NC
John Girotto, MD, MMA
Grand Rapids, MI
Virender K. Singhal, MD
Kansas City, MO

DENTISTRY
Richard Bruun, DDS
Boston, MA
Christos Katsaros, DDS, DMD,
Odont Dr, PhD
Bern, Switzerland

DENTISTRY (cont)
Kirt E. Simmons, DDS, PhD
Roland, AR

EPIDEMIOLOGY
Suzan Carmichael, PhD
Stanford, CA
Cynthia H. Cassell, PhD
Atlanta, GA

ETHICS / HEALTH POLICY ISSUES
Helen M. Sharp, PhD
Kalamazoo, MI

GENETICS
Peter A. Mossey, PhD, BDS
Dundee, Scotland
Michelle Rubini, MD
Ferrara, Italy

ORAL/MAXILLOFACIAL SURGERY
Sidney B. Eisig, DDS
New York, NY

OTOLARYNGOLOGY
Stephen F. Conley, MD
Milwaukee, WI

PEDIATRICS
Stephen F. Conley, MD
Milwaukee, WI

PLASTIC & RECONSTRUCTIVE SURGERY
Arun Gosain, MD
Chicago, IL
Davinder Singh, MD
Phoenix, AZ
Brian C. Sommerlad, MB, BS, FRCS
Chelmsford, United Kingdom

SPEECH PATHOLOGY
Tim Bressman, PhD
Toronto, Ontario
Debbie Sell, PhD
London, United Kingdom

EDITORIAL ASSISTANT
Deborah C. Ogle
Pittsburgh, PA

JOURNAL EDITORS 1964-PRESENT

Volumes 1 through 6, 1964-1969 ... Hughlett L. Morris, PhD
Volumes 7 through 12, 1970-1975. .. Robert L. Harding, MD, DDS
Volumes 13 through 18, 1976-1981 .. Betty Jane McWilliams, PhD
Volumes 19 through 21, 1982-1984 ... R. Bruce Ross, DDS, MSc
Volumes 22 through 25, 1985-1988 .. Ralph L. Shelton, PhD
Volumes 26 through 28, 1989-1991 ... Robert J. Shprintzen, PhD
Volumes 29 through 33, 1992-1997 ... Stewart R. Rood, PhD
Volumes 34 through 44, 1998-2007 ... Jerald B. Moon, PhD
Volumes 45 through 47, 2008-2010 .. Arshad R. Muzaffar, MD
Volume 48, 2011 .. Thomas W. Guyette, PhD
Volumes 48+, 2011-present ... Jack Yu, MD, DMD, MS Ed
American Cleft Palate-Craniofacial Association – Past Presidents

Linwood Grace, DDS .. 1943
Linwood Grace, DDS .. 1944
Cloyd S. Hankins, DDS 1945
Cloyd W. Fry 1949
Frank Fox, DDS 1949
Leonard S. Fletcher, DDS 1948
William J. Robinson, DDS 1949
Nathaniel A. Olinger, DDS 1950
John K. Hankins, DDS 1951
Herbert Koeppe-Baker, PhD 1952
Sumner Palardy, DDS 1953
Robert Harding, DDS, MD 1954
Cecil Conroy, DDS 1955
Eugene T. McDonald, EdD 1956
Donald M. Glover, MD 1957
Stephen F. Forrest, DDS 1958
Jack Matthews, PhD 1959
J. L. Longmore, MD 1960
Samuel Pruzansky, DDS 1961
D. C. Spierschmitz, Ph.D 1962
Richard C. Webster, MD 1963
J. Daniel Subtelny, DDS 1964
Betty Jane McWilliams, PhD 1965
Peter Randall, MD 1966
Morton S. Rosen, DDS 1970
Hughlett L. Morris, PhD 1970
John O. Owolowoso, DDS 1971
R. Bruce Ross, DDS 1972
William T. Crier, DDS 1973
Hughlett L. Morris, PhD 1974
Vernon V. Adams, DDS 1976
Howard Adus, DDS 1976
Kenneth R. Baech, PhD 1977
John O. Owolowoso, DDS 1977
Robert L. Harding, MD, DDS 1978
William L. Homan, DDS 1979
Elise Hahn, PhD 1980
William T. Crier, DDS 1980
Robert W. Parsons, MS 1981
Donald W. Warren, DDS, PhD 1982
Duane Van Demark, PhD 1982
Leslie M. Hoge, MD, PhD 1984
George J. Chericci, DDS 1985
Sally J. Peterson-Falzone, PhD 1986
Robert W. Parsons, MS 1987
Charles R. Kremenak, DDS 1988
David F. Kuehn, PhD 1989
Alphonse R. Burdi, PhD 1990
Eugene T. McDonald, EdD 1991
Bernice Bergen 1991
Morton S. Rosen, DDS 1992
Michael L. Lewin, MD 1993
J. Daniel Subtelny, DDS 1994
Robert W. Blakeley, PhD 1994
Libby W. Wilson, MD 1995
Robert M. Mason, DDS, MD 1995
Ronald P. Strauss, DMD, PhD 1996
Rodger M. Dalston, PhD 1997
Jeffrey L. Marsh, MD 1998
Katherine D. Dryer, DDS, MS, MD, Orth. 1999
Marilyn C. Jones, MD 2000
John E. Risko, PhD 2001
Ross E. Long, Jr., DMD, PhD 2002
Don LaRossa, MD 2003
Michael Kannel, PhD 2004
Marilynn A. Cohen, LSP 2005
A. Michael Sadove, MD 2006
Peter M. Spalding, DMS, MS, MS 2007
Kathleen A. Kaplan, PhD 2008
Michael J. Buckley, DMD, MS, MBA 2009
Isaac L. Wormom, III, MD 2010
Jerald B. Moon, PhD 2011
Howard M. Saal, MD 2012
Mark P. Mooney, MD 2013
Helen M. Sharp, PhD 2014

Cleft Palate Foundation – Past Presidents

Honors Of The Association

Robert H. Ivy, MD, DDS 1963
Herbert K. Coop, DDS 1965
Josef Warkany, MD 1966
Herbert Koeppe-Baker, PhD 1967
Paul Fogg-Andersen, MD 1973
F. Clarke Fraser, PhD, MD 1974
Samuel Pruzansky, DDS, MS 1976
Dr. Michael Jainsch, Plastic Surgeon, Pecs, Hungary 1976
Matthews, PhD 1979
Hughlett L. Morris, PhD 1982
Wilton M. Krogman, PhD 1983
Samuel Berkowitz, DDS, MS 1978/1979
Betty Jane McWilliams, PhD 1982/1983
D. Ralph Millard, Jr., MD 1985
Peter Randall, MD 1986
Betty Jane McWilliams, PhD 1987
Mohammad Mazaheri, DDS, MSc 1989
Paul L. Tessler, MD 1991
Donald W. Warren, DDS, PhD 1992
Robert J. Gorlin, DDS, MS, DSc 1993
Philip J. Boyes, MD, MS, DSc 1994
Malcolm Johnston, DDS, DSc, MD, PhD 1995
M. M. Michael Vosman, Jr., DMD, PhD 1996
Sylvan Stool, MD 1997/1998
Sylvan E. Stool, MD 1980/1981
Mohammad Mazaheri, DDS 1981/1982
Robert W. Parsons, MS 1994
Jerald B. Moon, PhD 2011
Betty Jane McWilliams, PhD 2006
Ralph L. Shelton, Jr., PhD 2007

Distinguished Service Award Of The Association

Hughlett L. Morris, PhD 1970
Duane C. Spierschmitz, Ph.D 1974
Kenneth R. Baech, PhD 1975
Betty Jane McWilliams, PhD 1975
Robert L. Harding, MD, DDS 1976
Asa J. Berlin, PhD 1977
Charlotte G. Wells, PhD 1978
Michael L. Lewin, MD 1978
Ross H. Musgrave, MD 1979
Mohammed Mazaheri, DDS, MSc 1979
Herold S. Lillywhite, PhD 1980
Morton S. Rosen, DDS 1980

Walter P. Birk 1982
Albert H. Guay, DMD 1984
Donald W. Warren, DDS, PhD 1984
William L. Homan, DDS 1985
Ralph L. Shelton, PhD 1985
R. Bruce Ross, DMS, MSc 1991
Mary Pannacker, PhD 1992
Betty Jane Phillips, Ed.D 1993
Patricia A. Landis, MA 1995
Robert W. Parsons, MS 1996
Mary Helen Hough 1997
Beatrice D. Olson 1998
Ronald P. Strauss, DMD, PhD 1998

Cleft Palate Foundation – Leadership Award

Hyman Gardsbaine, DO 1990
Elisabeth Bednar 1991
Donnie Schlereth 1991
Bernnie Berger 1991
Karen Schudson 1992
Pamela Onyx 1993
Peg Byrner, EdD 1994
Betsy Wilson 1995
Rochelle “Rickey” Anderson 1996

Joanne Greene 1997
Hope E. Charkins, MSW 1998
William D. Eiserman, PhD 1999
Arthur and Shelly Green 2000
Karen Le Clair 2002
Julie DeLaurier 2003
Ginny Potter 2004
Carrie Gruman-Trinkner 2004
Debbie Oliver 2005

ACPA Visiting Scholars

95 - Dr. Michael Jainsch, Plastic Surgeon, Pecs, Hungary
1996 - Dr. Raymund Joaquin Erese, Plastic Surgeon, Marikina City, Philippines
1997 - Ms. Juiana Pratis, Team Coordinator, Chiang Mai, Thailand
1998 - Dr. Raymond Joaquin Erese, Plastic Surgeon, Marikina City, Philippines
1999 - Dr. Om Prakash Kharbanda, Orthodontist, New Delhi, India
2000 - Ms. Arina Gomova, Speech-Language Pathologist, St. Petersburg, Russia
2001 - Dr. Pradip Shetvey, Orthodontist, Karnataka, India
2002 - Ms. Milkyong Park, Speech-Language Pathologist, Seoul, South Korea
2003 - Dr. Vuthy Chhoeurn, Plastic Surgeon, Phnom Penh, Cambodia
2004 - Dr. Glenda H. De Villa, Oral/Maxillofacial Surgeon, Alabang Muntinlupa City, Philippines
2005 - Dr. Peter Donkor, Oral/Maxillofacial Surgeon, Kumasi, Ghana
2006 - Dr. Mehmet Okan Akcam, Orthodontist, Ankara, Turkey
2007 - Dr. Seyad Abbahossain Emami, Plastic Surgeon, Tehran, Iran
2008 - Dr. Pawan Naichayhon, Oral/Maxillofacial Surgery, Kattamadhon, Bagnon, Nepal
2009 - Dr. Ariuntuul Garidikhuu, Prosthodontics, Ulaanbaatar, Mongolia
2010 - Dr. Fakademi Oghimi, Oral/Maxillofacial Surgery, Osun, Nigeria
2011 - Mr. Kweung Dori, Speech Therapist, Bhutan
2012 - Dr. Margot Escobedo, Orthodontist, Lima, Peru
2013 - Dr. Alia Khadre, Orthodontist, Egypt
2014 - Dr. Gerald Suskiw, Orthodontist, Lagos, Nigeria
2015 - Dr. Gayatri Moghe-Ghodapatil, Orthodontist, Hyderabad, India

The Visiting Scholar Program has been continuously funded through a grant by the Striker Craniofacial Foundation since 1995.
2015 Cleft Palate Foundation Annual Donors

The Board of Directors would like to thank the following individuals for their contributions to the 2015 Annual Fund through 3/16/2015.

Member Contributions:

Benefactor ($2500-$4999)
- Mark Hatala

Patron ($1000-$2499)
- Gary Anderson
- Silvia Blemker
- Howard Saal
- Patricia Schultz
- Joseph Williams

Partner ($750-$999)
- Peggy Buchholz

Sponsor ($500-$749)
- Douglas Courtemanche
- Rodger Dalston
- Bruce Horswell
- Oksana Jackson
- Marilyn Jones
- Mohammad Mazaheri
- Richard James Nissen
- Earl Seaver

Friend ($250-$499)
- Claudia Crilly Bellucci
- Anne Boekelheide
- Richard Burton
- Sydney Butts
- Arlene Dagys
- Lisa David
- Deji Fashemo
- John Grant
- Roderick Jordan
- Judith LeDuc
- Angelina Loo
- Hughlett Morris
- Gary Neiman
- Kristin Stueber
- Judith Trost-Cardamone
- Duane VanDemark
- Bryan Williams
- Isaac Wornom

Affiliate ($100-$249)
- Joan Arvedson
- Paul Austin
- Joan Barzilai
- Marilyn Cohen
- Brian Collins
- Sidney Eisig
- Linda Fawx
- Dana Gamblin
- Patricia Glick
- Georges Herzog
- Sharon Hundert
- Robert Isaacson
- Janet Jacobs
- Jennifer Keagle

Contributor ($50-$99)
- Janice Lalikos
- David Leber
- Jean-Francois Lefaivre
- Robert Lipinski
- Meg Maguire
- Rosario Mayo
- Gary McKenna
- William Olin
- M. Lena Onnell
- Terumi Ozawa
- Michael Papademtriou
- Earlene Paynter
- Benoit Piquette
- Andrea Ray
- Steven Roser
- Iris Sageser
- Emet Schneiderman
- Ralph Shelton
- Jordan Sinow
- Miller Smith
- Sherard Tatum
- Marie Tolarova
- Cynthia Verchere

Other Donors
- Najah Alhashimi
- Mary Breen
- Linda Dufy
- Brittany Eubanks
- Rhona Beth Galera
- Lora Hindenburg
- Takashi Hirakawa

IN HONOR OF:
- Cynthia Jacobsen
- Jae Chan Kim
- Mary Kommers
- David Kuehn
- Donald Laub
- Terry Levitt
- Cheng-Hui Lin
- Riccardo Francesco Mazzola
- Vanessa Morenci
- Maria Angelica Muñoz
- Norifumi Nakamura
- Jack Paradise
- William Parris
- Victoria Rothman
- Jacques Saboie
- Hyo Keun Shin
- Nancy Shinno
- Walied Touni
- William Trier
- Janice Woolsey

IN MEMORY OF:
- Janice Lalikos
- Janice Lalikos
- David Leber
- Jean-Francois Lefaivre
- Robert Lipinski
- Meg Maguire
- Rosario Mayo
- Gary McKenna
- William Olin
- M. Lena Onnell
- Terumi Ozawa
- Michael Papademtriou
- Earlene Paynter
- Benoit Piquette
- Andrea Ray
- Steven Roser
- Iris Sageser
- Emet Schneiderman
- Ralph Shelton
- Jordan Sinow
- Miller Smith
- Sherard Tatum
- Marie Tolarova
- Cynthia Verchere

Non-Member Contributions:

$2500 - $5000
- Sol and Naomi Berman

$1000 - $2499
- Jonathan and Lori Gilley
- Frank Efezkohae

$500 - $999
- Nancy Baker
- Norma Exner
- Doris Liu
- Martha Matthews
- Katherine McNabb
- Krishant Patel
- Jonathan and Amanda Preedom
- Suman Saxena
- Wendy-Jo Toyama
- Karin Vargervik

$250 - $499
- Jeremy Baggish
- Michael Fleishman
- Wendy Greene
- Shawn R. Lockery
- Jaredine Pagalaran
- Dawn Spusta
- Martha Weber

$150 - $249
- Daniel J. Brachman
- Glen and Carol Harrah
- Rahul Jajoo
- Mary Leong
- Tod and Laura Meyer
- Michael Petersen
- Dennis Ryba
- Jennifer Tuchon

The Cleft Palate Foundation sincerely appreciates your generous support. Due to recent system changes, this listing may not contain complete data. Please notify us of any changes to be reflected in our online donor acknowledgements.
2015 Cleft Palate Foundation Annual Donors

The Board of Directors would like to thank the following individuals for their contributions to the 2015 Annual Fund through 3/16/2015.

$75 - $149
Victoria Artis
Allan Edward Baer
Roberto Bendoni
Nadine Block
Veronica Casier
Elizabeth Clark
John Connell
Roger Crockett
Tara Dean
Samantha DiMatteo
Nicholas Guyol
Karen Jones
Steve Kloessner
Heidi LaGrasta
Alexis Lukas
Jose Navarrette
Michael Riddelle
Joel and Kathleen Sassa
Brenda Schultz
Diane Suasses
Lawrence Tom
Marion Viglione

$74 and Under
Lupe and Rodrigo Aguilera
Violette Baldessari
Stephanie Banning
Patricia Barber
Brooke Benson
Sheldon and Penny Bernick
Aimee Best
Sondra Blasenstein
Andrew Bravo
Shana Caxio
Janet Chen
Pin Chih Lee
Erica Cooper
Christopher Coskey
Rosalinda Costa
Kay Davis
Samantha DeBia
Samantha Delicato
Joseph Carlos Dieguez
Victoria Farrell
M.L. Felder
Patricia Flournoy
Brian and Katie Frimming
Mr. and Mrs. Herbert Gorenstein
Steven Handler
AJ Harrington
Gertrude Harris
William Harrison
Samantha Hays
Minya Hensley
Teshia L. Johnson
Lewis Kay
Michael Kelley
Kathleen Leon
Tymothy Lipari
Matt and Laura Livingood
Tania MacDonald
Cathy Madonia
Sharon Marquez
Tamara Maruska
Melissa Mattioli
Teresa Mettler
Kristine Miu
Philip Monetti
Shelly Myers
Theodore Phillips
Marilyn Prouty
John and Rebecca Richards
Wendy Rickard
Jane E Ryan
Jon Sauve'
Robert Scheirer
Bonnie Simon
Celia Snow
Rick and Pamela Stocking
Deborah Trombley
Kim Uhrich
Laura Unangst
Trista Vanderah
Pat Walsh
Marie A. Weir
Alexis Wheeler
Gregg and Wendy Wheeler
Stephanie White
Karen Williams
Stephanie Williamson
Nancy Wylie
Mary Zornes

IN HONOR OF:
Amanda Woodin
– Samantha Delicato
Andrew Livingood
– Matt and Laura Livingood
Blake Meyer
– Tod and Laura Meyer
Bo Garis
– Shana Caxio
– Victoria Farrell
– Alexis Lukas
– Melissa Mattioli
– Michael Riddelle
– Jon Sauve’
– Robert Scheirer
– Laura Unangst
– Trista Vanderah

Cadence Wheeler
– Alexis Wheeler
– Tania MacDonald

Calvin Banning
– Stephanie Banning
Connor MacKenzie
– Chantelle MacKenzie

Dennis Matthew Beaudry Jr.
– Cathy Madonia
Emma Guerrero
– Shelly Myers
Enzo LaGrasta
– Heidi LaGrasta

Ethan Howe and Daniel Kohar
– Violette Baldessari
Garrett
– Pat Walsh
Harmony Barber
– Patricia Barber
Karson Alexander
– Brooke Benson
Katherine Phillips
– Theodore Phillips
Marilyn Cohen and Thelma Cohen
– Jonathan and Lori Cilley

Mason Gwiazdon
– Jennifer Tuchon
Mitchell and Eva Preedom
– Jonathan and Amanda Preedom

Morgan Annalise Brachman
– Daniel J. Brachman
Naomi Cook
– Wendy Rickard

Nevaeh Trombley
– Deborah Trombley
Noah Suddes
– Diane Suddes

Olivia Rose McVicker
– Samantha DiMatteo

IN MEMORY OF:
Dr. Don LaRossa
– Roger Crockett
– Katherine McNabb
Frank Maruska
– Tamara Maruska
James Leaphart
– Stephanie White
– Nancy Wylie
– Kay Davis
Jerome E. Glickman
– Minya Glickman
Rosemarie Carlson
– Karen Williams

The Cleft Palate Foundation sincerely appreciates your generous support. Due to recent system changes, this listing may not contain complete data.
Please notify us of any changes to be reflected in our online donor acknowledgements.
2014 Cleft Palate Foundation Annual Donors
The Board of Directors would like to thank the following individuals for their contributions to the 2014 Annual Fund.

Member Contributions:
Sustainer ($5000+): David Low
Benefactor ($2500-$4999): Rosario Mayo, Libby Wilson
Partner ($750-$999): Peggy Buchholz, Robert Parsons
Sponsor ($500-$749): Robert Parsons, Peggy Buchholz
2014 Cleft Palate Foundation Annual Donors

The Board of Directors would like to thank the following individuals for their contributions to the 2014 Annual Fund.

IN MEMORY OF:

– Jesse Taylor

Plastic Surgery Faculty of CHOP – Jesse Taylor

IN HONOR OF:

– Marilyn Cohen
– Daniel Blemker
– Silvia Blemker
– Robert Parsons

IN MEMORY OF:

– Virginia Hinton
– Michael Friel
– Charlene Deuber
– Canice Crerand
– Marilyn Cohen

$74 and Under

Kari Aakre
Michael Abdonay
Llupe and Rodrigo Aguilera
Nancy S. Albright
Peggy Aldridge
Julie Alexander
Tona Alston
Edward and Maria Alvarez
Christopher and Ashleigh Alvarez
Patry Amick
Christine Amira
James and Ann Anderson
Phil and Nancy Andrews
David and Janet Anthony
Keith and Mary Ann Bacon
Ruth Baner
Todd Banning
William and Nancy Barbou
Jim and Linda Baroody
Laura Beckelhimer
William Bedillon
Vangam Tabler
Sheldon Bernick
Mary Bickley
Christina Bohemer
Clyde R. Bogle
Bruce Boone, Ill
Emily Bowden
Steven and Miriam Brandon
Eugene Branden
Robert E. Brewer
Ann K. Briant
Jeff Bullert
Michael and Melissa Bullock
Joseph Carlos
Esther Castagnetto
Wendy Ching
Matthew Choi
Cary Clark
Tabitha Clinton
April Davis
Lisa Contreras
Joyce Cook

The Cleft Palate Foundation sincerely appreciates your generous support. Due to recent system changes, this listing may not contain complete data. Please notify us of any changes to be reflected in our online donor acknowledgements.
The Board of Directors would like to thank the following individuals for their contributions to the 2014 Annual Fund.

IN HONOR OF:

Abigail Marie Miller
– Ruth Ann Corts
Aiden Lee Hughley
– Lois Pruden
Aidric Matthew Groark
– Matthew Groark
Aj Ragos
– Carin Ragos
Alani Mercedes
– Shanna Mercado
Alex, Jaimie, and Matt
– Debbie Ogle
Alexis Lin Floyd
– Scott S. Floyd
Alexis Whitby
– Simon Phipps
– Alan Whitby
– Ana Whitby
Allan Baer
– Jonathan and Lori Cilley
Andrew Lee Livingood
– Matt and Laura Livingood
Andrew Papi Lewis
– Jerri Montanez
Benson McGrady
– Sarah McGrady
Blake Meyer
– Tod and Laura Meyer
Brayden Davis
– Anna Davis
Calvin Banning
– Maujen Kline
– Krista Kling
– Christie Renner-Alsina
– Anne Robertson
Cannon Kelly
– Cannon Kelly
– Stephanie Parker-Helmkamp
– Tim and Laura Meyer
– Lois Pruden
– Alani Mercedes
– Alex, Jaimie, and Matt
– Alexis Lin Floyd
– Michael and Nicole Hebert
– Marie and Bill Helfferich
– Michael and Nicole Hebert
– Marie and Bill Helfferich
– Dan and Monica Khan
– John and Juleene McGowan
– Don and Claude Denbow
– Sam and Martha Ogle

Please notify us of any changes to be reflected in our online donor acknowledgements.
The Board of Directors would like to thank the following individuals for their contributions to the 2014 Annual Fund.

IN MEMORY OF:
- Anna DeRuyster
- Ava Hicks
- Cory Boland
- Dr. Daniel Subtelny
- Dr. Dan LaRossa
- Thanksgiving in the Country
- The Children’s Hospital Foundation of Greater Kansas City
- The Children’s Surgical Associates, Ltd.
- Dr. Don LaRossa
- The Mine Safety and Health Administration
- Lively Hembree

2014 Cleft Palate Foundation Annual Donors

- Anand and Maria Rampersad
- Avinash and Nisha Rampersad
- Kamal and Majoie Rampersad
- Nalini and Nirmal Rampersad
- Shakti Rampersad
- Dextor and Nagina Romero
- Christine Salapong
- Eric and Lorena Schwartz
- Sham and Amrit Seeran
- Janice Steinmetz
- Tu Tu
- Ami D Vyas

- Dr. James A. Lehman
- Mike Teague
- Ell Rizo
- Michelle Rizo
- Elizabeth Clifton
- Tonya Mayer
- Ellis Tate Earls
- Erin Paine
- Emily Rose Weiss
- The Norman Shulevitz Foundation
- Emma Rose LeClair
- Karen LeClair

- Eryn Foust
- Erica Cooper
- Evelyn Luchansky
- Cheryl Noe
- Flynn Johnson
- Katie Johnson
- Great Nephew
- Cynthia Stanton
- Hadley Evelyn
- Aakre Kari Aakre
- Hugh Xiong
- Lucy Yang
- Jacob Andrew
- Joseph Lewis, Cornerstone Baptist Church
- Jameson Scott
- Joanne Denison
- Jessica, Bruno and Daniel
- Linda G. Poirier
- Kai Charlie Curtis
- Jane E Ryan
- Kyle Ivankovich
- Gabrielle Barrick
- Richard Knight

2014 Cleft Palate Foundation Annual Donors

- Layla Ross
- Joanne Altizer
- Steven and Miriam Brandon
- Brian and Beth Ross
- Ginger Thomann
- Liana Bassett
- Ruth Baker
- Robert and Melinda Bassett
- Tabitha Clinton
- Senta Cunningham
- Stacey Harris
- Irene Renteria
- Amanda Ruiz
- Liana Bassett and Mickey Corral
- Irene Renteria
- Marilyn Cohen
- Jonathan and Lori Cilley
- Miranda Marie Thompson
- Harpers Ferry Baptist Church
- Morgan Annalise Brachman
- Daniel J. Brachman
- My Son
- Tod Hughes
- Nancy and Brandy
- Cheryl Jeanneret
- Nicholas Rodriguez
- Cynthia Rodriguez
- Patrick Cable
- April Cable
- Richard Strong Ortiz
- Joseph Hinojosa
- Robin McGrew
- David Pfau
- Ryder Jeremiah
- Lupe and Rodrigo Aguilera
- Julie Alexander
- Christopher and Ashleigh Alvarez
- Edward and Maria Alvarez
- Christine Amira
- William and Nancy Barbour
- Ann K. Briant
- Michael and Melissa Bullock
- Andrea K. Cox
- Kristy De Leon
- Scott and Irene Dunbar
- Linda Engstrom
- Delores and Brett Gourley
- Alma and Mark Gutierrez
- Dominic and Hollie Hajdukovic
- Rodrigo and Kelly Jimenez
- Jared Kluth
- Susan Kluth
- Brandy Lemon
- Courtney and Denise Mark
- John and Julieene McGowan
- Jimmy and Cindy Misik
- Elizabeth Perez
- Aurora, Rick, and Graciela Perez-Jenkins
- Elizabethan and Janina Quintana
- Michael and Patty Roberts
- Monica R. Montoya and Alphonse Robles
- A. Bruce and M. Dianne Sanborn
- Carolyn Seguin
- Sean and Michelle Stegmaier
- Ariana and Nicholas Stein
- Angela Stewart
- Jennifer Stocking
- JL Stocking
- Mary and Roy Stocking
- Rick and Pamela Stocking
- Franz Summers
- Arthur and Geraldine Vasquez
- Sam Sheffield
- Margaret Sheffield
- Saul Santana
- Perez Sharon Marquez
- Sawyer Dumm
- Phil and Nancy Andrews
- Christina Boehmer
- Susan Battilo
- Bill and Bev DeLong
- Laura Dumma
- Amie Fox
- Olivia Frye
- Amanda Heidinger
- John and Kay Helm McKorles
- Sandy Petzel
- Megan and Lee Radcliff
- Lorraine Rhymer
- Timothy and Deborah Rusty and Tricia Wiget
- Seth Mlua
- Hope Kingma
- Smiles for Miles
- David Garcia
- Jose Henriquez
- Vickie Petersen
- Michael Petersen
- Delores and Brett Gourley
- Alma and Mark Gutierrez
- Dominic and Hollie Hajdukovic
- Rodrigo and Kelly Jimenez
- Jared Kluth
- Susan Kluth
- Brandy Lemon
- Courtney and Denise Mark
- John and Julieene McGowan
- Jimmy and Cindy Misik
- Elizabeth Perez
- Aurora, Rick, and Graciela Perez-Jenkins
- Elizabethan and Janina Quintana
- Michael and Patty Roberts
- Monica R. Montoya and Alphonse Robles
- A. Bruce and M. Dianne Sanborn
- Carolyn Seguin
- Sean and Michelle Stegmaier
- Ariana and Nicholas Stein
- Angela Stewart
- Jennifer Stocking
- JL Stocking
- Mary and Roy Stocking
- Rick and Pamela Stocking
- Franz Summers
- Arthur and Geraldine Vasquez
- Sam Sheffield
- Margaret Sheffield
- Saul Santana
- Perez Sharon Marquez
- Sawyer Dumm
- Phil and Nancy Andrews
- Christina Boehmer
- Susan Battilo
- Bill and Bev DeLong
- Laura Dumma
- Amie Fox
- Olivia Frye
- Amanda Heidinger
- John and Kay Helm McKorles
- Sandy Petzel
- Megan and Lee Radcliff
- Lorraine Rhymer
- Timothy and Deborah Rusty and Tricia Wiget
- Seth Mlua
- Hope Kingma
- Smiles for Miles
- David Garcia
- Jose Henriquez
- Vickie Petersen
- Michael Petersen
- Delores and Brett Gourley
- Alma and Mark Gutierrez
- Dominic and Hollie Hajdukovic
- Rodrigo and Kelly Jimenez
- Jared Kluth
- Susan Kluth
- Brandy Lemon
- Courtney and Denise Mark
- John and Julieene McGowan
- Jimmy and Cindy Misik
- Elizabeth Perez
- Aurora, Rick, and Graciela Perez-Jenkins
- Elizabethan and Janina Quintana
- Michael and Patty Roberts
- Monica R. Montoya and Alphonse Robles
- A. Bruce and M. Dianne Sanborn
- Carolyn Seguin
- Sean and Michelle Stegmaier
- Ariana and Nicholas Stein
- Angela Stewart
- Jennifer Stocking
- JL Stocking
- Mary and Roy Stocking
- Rick and Pamela Stocking
- Franz Summers
- Arthur and Geraldine Vasquez
- Sam Sheffield
- Margaret Sheffield
- Saul Santana
- Perez Sharon Marquez
- Sawyer Dumm
- Phil and Nancy Andrews
- Christina Boehmer
- Susan Battilo
- Bill and Bev DeLong
- Laura Dumma
- Amie Fox
- Olivia Frye
- Amanda Heidinger
- John and Kay Helm McKorles
- Sandy Petzel
- Megan and Lee Radcliff
- Lorraine Rhymer
- Timothy and Deborah Rusty and Tricia Wiget
- Seth Mlua
- Hope Kingma
- Smiles for Miles
- David Garcia
- Jose Henriquez
- Vickie Petersen
- Michael Petersen

The Cleft Palate Foundation sincerely appreciates your generous support. Due to recent system changes, this listing may not contain complete data. Please notify us of any changes to be reflected in our online donor acknowledgements.
Statement of Financial Position
June 30, 2014

ASSETS

CURRENT ASSETS:
Cash and cash equivalents $939,963
Accounts receivable 5,295
Due from The Cleft Palate Foundation 135,819
Deposits 65,690
Total Current Assets $1,146,767

Investments 805,158

FIXED ASSETS:
Building 451,586
Office furniture and equipment 127,505
Assets not yet in service – software 43,545
Less accumulated depreciation – bldg (157,212)
Less accumulated depreciation – office furniture and equipment (114,423)
Total Fixed Assets $351,001

TOTAL ASSETS $2,302,926

LIABILITIES AND NET ASSETS

CURRENT LIABILITIES:
Accounts payable $114,017
Accrued liabilities 69,181
Due to The Cleft Palate Foundation 84,739
Deferred revenue 167,330
Total Liabilities $435,267

NET ASSETS

Unrestricted 1,867,659

Total Liabilities and Net Assets $2,302,926

Following are the audited financial reports prepared by the firm of Maher Duessel. Additional information will be provided at the Annual Business Meeting in Palm Springs on Friday, April 24, 2015. Copies of the audits are available through the National Office.

Statement of Activities
For the year ended June 30, 2014

OPERATING REVENUES AND OTHER SUPPORT:
Member dues and fees $359,750
International airmail receipts 8,820
Annual meeting
- Exhibits 40,750
- Commercial support 55,500
- Registration 259,573
Program registration 6,895
Cleft Palate-Craniofacial Journal 45,100
CAT application fees 25,450
Grant revenue 18,248
Miscellaneous receipts 10,857
Total Operating Revenues and Other Support $830,943

EXPENSES

Programs:
- Membership and team services 198,903
- Annual meeting 385,050
- Educational and research initiatives 35,993
- Cleft Palate-Craniofacial Journal 75,475
- Outreach and alliances 58,290
- Team standards 39,866
Total program expenses $793,577
Management and general $105,043

Total operation expenses $898,620

Excess (deficiency) of operating revenues and other support over operating expenses (67,677)

NONOPERATING SUPPORT AND REVENUES

Investment income 67,957

CHANGES IN NET ASSETS 280

NET ASSETS

Beginning of year $1,867,379
End of year 1,867,659
Statement of Financial Position
June 30, 2014

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>Unrestricted</th>
<th>Temporarily Restricted Funds</th>
<th>Permanently Restricted Funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT ASSETS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash and cash equivalent</td>
<td>495,539</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts receivable</td>
<td>2,921</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Due from ACPA</td>
<td>84,739</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Current Assets</td>
<td>$583,199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investments</td>
<td>944,622</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIXED ASSETS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building</td>
<td>149,435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less accumulated depreciation</td>
<td>(54,439)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Fixed Assets</td>
<td>94,996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ASSETS</td>
<td>$1,622,817</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIABILITIES AND NET ASSETS

<table>
<thead>
<tr>
<th>CURRENT LIABILITIES:</th>
<th>Unrestricted</th>
<th>Temporarily Restricted Funds</th>
<th>Permanently Restricted Funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts payable</td>
<td>2,166</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accrued liabilities</td>
<td>4,124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Due to ACPA</td>
<td>135,819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>$142,109</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NET ASSETS

<table>
<thead>
<tr>
<th>Unrestricted</th>
<th>Temporarily Restricted Funds</th>
<th>Permanently Restricted Funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Unrestricted, board designated for endowment</td>
<td>23,353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Unrestricted, undesignated</td>
<td>685,441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total unrestricted</td>
<td>$708,794</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temporarily restricted</th>
<th>Unrestricted</th>
<th>Temporarily Restricted Funds</th>
<th>Permanently Restricted Funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Temporarily restricted – program purposes</td>
<td>181,011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Temporarily restricted – accumulated endowment earnings</td>
<td>249,109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total temporarily restricted</td>
<td>$430,120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Permanently restricted | 341,794 | | | |
|**Total Net Assets** | $1,480,708 | | | |

Total Liabilities and Net Assets $1,622,817

Statement of Activities
For the year ended June 30, 2014

<table>
<thead>
<tr>
<th>OPERATING REVENUES AND OTHER SUPPORT</th>
<th>Unrestricted</th>
<th>Temporarily Restricted Funds</th>
<th>Permanently Restricted Funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributions</td>
<td>274,762</td>
<td>17,343</td>
<td>0</td>
<td>292,105</td>
</tr>
<tr>
<td>Member fundraising</td>
<td>9,450</td>
<td>0</td>
<td>0</td>
<td>9,450</td>
</tr>
<tr>
<td>Pamphlet and bear sales</td>
<td>27,502</td>
<td>0</td>
<td>0</td>
<td>27,502</td>
</tr>
<tr>
<td>Research and foundation grants</td>
<td>7,615</td>
<td>0</td>
<td>0</td>
<td>7,615</td>
</tr>
<tr>
<td>Miscellaneous income</td>
<td>6,603</td>
<td>0</td>
<td>0</td>
<td>6,603</td>
</tr>
<tr>
<td>Net assets released from restriction</td>
<td>130,411</td>
<td>(130,411)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Operating Revenues and Other Support</td>
<td>$456,343</td>
<td>(110,068)</td>
<td>0</td>
<td>$346,275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATING EXPENSES</th>
<th>Unrestricted</th>
<th>Temporarily Restricted Funds</th>
<th>Permanently Restricted Funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Family services</td>
<td>172,451</td>
<td>0</td>
<td>0</td>
<td>172,451</td>
</tr>
<tr>
<td>- Outreach and alliances</td>
<td>10,303</td>
<td>0</td>
<td>0</td>
<td>10,303</td>
</tr>
<tr>
<td>- Educational research initiatives</td>
<td>79,340</td>
<td>0</td>
<td>0</td>
<td>79,340</td>
</tr>
<tr>
<td>Total program expenses</td>
<td>$262,094</td>
<td>0</td>
<td>0</td>
<td>$262,094</td>
</tr>
<tr>
<td>Management and general</td>
<td>44,205</td>
<td>0</td>
<td>0</td>
<td>44,205</td>
</tr>
<tr>
<td>Fundraising</td>
<td>8,715</td>
<td>0</td>
<td>0</td>
<td>8,715</td>
</tr>
<tr>
<td>Total operating expenses</td>
<td>$315,014</td>
<td>0</td>
<td>0</td>
<td>$315,014</td>
</tr>
<tr>
<td>Excess (deficiency) of operating revenues and other support over operating expenses</td>
<td>141,329</td>
<td>(110,068)</td>
<td>0</td>
<td>28,261</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NONOPERATING SUPPORT AND REVENUES</th>
<th>Unrestricted</th>
<th>Temporarily Restricted Funds</th>
<th>Permanently Restricted Funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment income</td>
<td>14,782</td>
<td>84,747</td>
<td>0</td>
<td>99,529</td>
</tr>
<tr>
<td>CHANGE IN NET ASSETS</td>
<td>156,111</td>
<td>(28,321)</td>
<td>0</td>
<td>127,790</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NET ASSETS:</th>
<th>Unrestricted</th>
<th>Temporarily Restricted Funds</th>
<th>Permanently Restricted Funds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of year</td>
<td>$552,683</td>
<td>$458,441</td>
<td>$341,794</td>
<td>$1,352,918</td>
</tr>
<tr>
<td>End of year</td>
<td>$708,794</td>
<td>$430,120</td>
<td>$341,794</td>
<td>$1,480,708</td>
</tr>
</tbody>
</table>

Following are the audited financial reports prepared by the firm of Maher Duessel.
Copies of the audits are available through the National Office.
What Is The “Ideal” Treatment Outcome For A Child with a Cleft?

Educational Objectives: The treatment of the child with a cleft begins at birth and does not have a defined end point. A multitude of practitioners are called upon to provide superb care for the child through the years. The ultimate treatment outcome for this child is dependent on every practitioner and each step or intervention the child receives.

No practitioner caring for a child with a cleft strives for anything less than the optimal outcome. But what defines that outcome in each respective field? From the surgeon to the orthodontist, to the speech pathologist to the behavioral psychologist; each practitioners’ treatment builds on the others and plays into the total outcome. Further complicating the picture is the reality that medical reimbursement is being tied to outcomes. Therefore, “who is defining my ideal outcome?”

This pre-conference symposium will focus on defining what the “ideal” outcome is as it pertains to each of the fields participating in the care of a cleft patient. Within each field we will review the evidence that supports the ideal outcome or discuss its glaring absence. Strategies to achieve the ideal outcome will also be highlighted. Finally, an assessment of how outcomes will continue to be tied to professional reimbursement will be had.

At the conclusion of the symposium, the attendee will be able to:

1) identify the key participants in a cleft team and recognize the successful outcome methodologies used by each specialty within the team.

2) reflect on their cleft team and identify the specific strengths of his/her team as well as any deficiencies in assessment of outcomes QI process?

3) define a quality improvement measure that can be implemented within the team and a strategy to accomplish it.

4) recognize a void in the cleft outcome literature that might be addressed through a collaborative team effort and/or with collaboration with other teams.

Symposium Co-Chairs:
Thomas D. Samson, MD
Penn State Hershey Medical Center, Hershey, PA

Mary Michaelene Cradock, PhD
St. Louis Children’s Hospital, St. Louis, MO

Symposium Faculty:
Amy L. Conrad, PhD
The University of Iowa Hospitals and Clinics
Iowa City, Iowa

Todd C. Edwards, PhD
University of Washington School of Public Health
Seattle, Washington

Kelly Evans, MD
Seattle Children’s Craniofacial Center
Seattle, Washington

David Fitzsimons, BS*
The Children’s Hospital at Westmead – Cleft Palate Clinic
Westmead NSW, Australia

Lynn Marty Grames, MS, CCC-SLP *
St. Louis Children’s Hospital – Cleft Palate and Craniofacial Institute
St. Louis, MO

Carrie Heike, MD, MS
Seattle Children's Craniofacial Center
Seattle, Washington

Kathleen A. Kapp-Simon, MA, PhD Psychology
Shriners Hospital for Children
Chicago, Illinois

Ross Long, Jr, DMD, MS, PhD
Lancaster Cleft Palate Clinic
Lancaster, PA

Joseph E. Losee, MD
Children’s Hospital of Pittsburgh of UPMC
Pittsburgh, PA

Mohammad Mazaheri, MDD, DDS, MSc
Lancaster Cleft Palate Clinic
Lancaster, PA

Thomas Sitzman, MD
Cincinnati Children’s Hospital Medical Center
Cincinnati, OH

Judith Trost-Cardamone, PhD
California State University, Northridge
Northridge, CA

Karen Wong, MD, MSc
Hospital for Sick Children
Toronto, Ontario, CAN

*An asterisk indicates the presenter made a disclosure. Please see symposium faculty listings on pages 22-23 for disclosure.

Symposium Support
With grateful appreciation to:

KLS-Martin Group and Dr. Mohammed Mazaheri, MDD, DDS, MSc
for support through educational grants.
Launched a 5-year project to advance international research on craniofacial anomalies. Included in the recommendations from that project was emphasis on intercenter collaboration for comparisons of treatment outcomes. In 2006 the Americleft Project was initiated with the support of ACPA and CPF. Since then, Americleft has carried out comparisons of outcomes from over 20 centers representing a wide range of treatment protocols. As interest in collaborative studies grows and additional centers with different protocols participate, our understanding of best practices in cleft care increases. Just as Americleft used Eurocleft as its model, other similar efforts worldwide have been planned or initiated: Japancleft, ANZcleft, Indiacleft, Africleft, Turkeycleft, Mexicleft. With worldwide agreement on standardization of records and methods for blinded comparisons, and eventual clinical trials based on the findings of inter-center studies, our treatment choices for cleft care become increasingly based on sound evidence rather than anecdote and opinion.

Numerous multicenter initiatives including the Americleft Project have empowered healthcare teams to collect and study patient-based outcome data for cleft/craniofacial care. These data provide an accurate picture of patient outcomes from a given team and are useful for comparing patient outcomes between teams. However, patient-based data does not provide information about the specific journey undertaken by patients through their respective cleft/craniofacial team nor information on how well a team actually works. By monitoring our provision of care, we can detect non-compliance or deviations from care more easily. When we pair our patient-based data and the data on our clinical processes, we are in a better position to understand and thus improve patient outcomes. The purpose of this presentation is to highlight the importance of measuring and monitoring the processes and steps within our patients’ journeys through our teams as an adjunct to the collection of traditional patient-base outcome measures.

Each learner will be able to determine how their respective team can participate in outcomes studies without compromising excellence in patient care. They will also better appreciate the importance and feasibility of team participation in outcomes studies.

Patient-reported outcomes (PROs) measure concepts of interest to patients, as reported by patients. As patient-centered care becomes increasingly important, quality improvement and clinical audits are driven by outcomes data that include PROs in addition to observer-reported, clinician-reported, and performance outcomes. The measurement of outcomes from the patient perspective must be clinically meaningful and scientifically sound. The CLEFT-Q is a cross-cultural PRO measure for patients with cleft lip and/or palate (CLP) designed through a rigorous mixed-methods process.

We developed fourteen independently-functioning scales following extensive qualitative interviews that were then...
revised through an iterative series of cognitive debriefing interviews and expert input. In a pilot field-test, we determined the optimal response options and compared paper versus electronic administration. A large-scale multi-national field-test is now underway. Once finalized, the CLEFT-Q will facilitate the inclusion of the patient perspective in the overall evaluation of treatment outcomes.

1:30 PM DEFINING THE SPEECH IDEAL
Judith Trost-Cardamone, PhD

It is implicitly agreed, at least among speech-language pathologists in developed countries who are specialized in craniofacial disorders, that an ideal early outcome for children born with cleft palate (+ cleft lip) is "normal speech by age 5," to coincide with entry into school and all that experience brings with it. At the same time, available research evidence and informal dialogue among SLP cleft specialists both suggest that somewhere between 50%-70% of children with cleft palate actually achieve normal speech by age 5. There clearly appears to be a mismatch between what is ideal or expected and what is real at this age and point in treatment. The speech outcome literature also informs us that outcome figures tend to improve as the population gets older and that by young adulthood, "good speech" can be expected in 90-100% and what is real at this age and point in treatment. The speech outcome literature also informs us that outcome figures tend to improve as the population gets older and that by young adulthood, "good speech" can be expected in 90-100% individuals with repaired cleft palate. This presentation will consider various factors that underlie how we define the ideal speech outcome.

2:00 PM BREAK

2:15 PM PATIENT AND FAMILY-CENTERED IDEAL OUTCOMES
Kathleen A. Kapp-Simon, PhD Psychology, Todd Edwards, PhD

The definitions of 'ideal outcomes' for children with cleft lip, cleft palate or both and their families vary based on the perceptions of the person completing the evaluation. Parents, patients and treating medical specialists do not always value the same outcomes. For example, hypernasal speech may prompt a recommendation for further intervention from a speech pathologist, but be of little concern to either parent or patient. Lip or nasal asymmetry may be of prime concern to a young patient but viewed as minor by a parent or surgeon. Adding further complexity, individual families differ where they place their priorities for treatment: for some families speech intelligibility or academic achievement is a high priority, while for others facial appearance takes primacy. During this presentation we will discuss methods for determining patient and family centered ideal outcomes as these methods apply to research and clinical settings.

2:45 PM PATIENT OUTCOMES: LEARNING AND PSYCHOSOCIAL
Amy L. Conrad, PhD

As children with oral clefts grow, focus of their care often extends beyond that of the cleft to how they are functioning in life (i.e., academically, personally, and socially). The nature of having a cleft puts children at risk for various psychosocial and learning concerns. Because of this risk, it is important to ensure proper screening methods to identify those with clinical concerns as early as possible, provide appropriate assessment of concerns to ensure appropriate intervention/remediation is given, and follow-up through development as psychosocial and learning demands change. This presentation will discuss common psychosocial/emotional and learning diagnoses children with cleft are at an increased risk for; review methods for clinical screening, assessment, and referral; and list different concerns during developmental stages. Attendees will be able to describe different diagnoses children with cleft are at risk for and list appropriate methods of screening and identification for referral and treatment.

3:15 PM BREAK

3:30 PM THE SURGICAL “IDEAL”
Joseph E. Losee, MD

What is the IDEAL surgical outcome for children born with clefts? This controversial discussion will call upon the psychology of appearance, beauty, and facial deformity. Likely all surgeons would agree that the ideal surgical outcome would include "normal human appearance", intelligible speech, as well as a functional and aesthetic occlusion. Many suffer from facial differences that result from trauma and injury, such as dog bites, and congenital anomalies. The ideal surgical outcome results when the patient, at the conclusion of reconstruction, is psychosocially stable and are at peace with themselves – accepting differences that fall within the "normal range" of human appearance.

4:00 PM SPEECH OUTCOMES: TECHNIQUES FOR THE REAL WORLD
Lynn M. Grames, MS, CCC-SLP*

Standard 6 of the Standards for Cleft Palate and Craniofacial Teams mandates that "The Team documents its treatment outcomes, including base-line performance and changes over time. Teams must conduct periodic retrospective or prospective studies to evaluate treatment outcomes."

For busy clinicians, evaluating treatment outcomes may seem time-consuming and expensive. Yet, unless we evaluate our outcomes in a meaningful way, we cannot know that changes we make in methods or techniques actually result in positive change. Organizing clinical data on the front end can make for easier retrospective outcomes analysis. Some methods for organizing and evaluating treatment outcomes will be discussed.
4:30 PM PANEL: TAKING OUR PULSE — EVALUATING OUR
teams’ INDIVIDUAL AND TEAM OUTCOME GOALS
Kathleen A. Kapp-Simon, PhD Psychology

Each learner will be able to identify strategies to help navigate
team dynamics in order to achieve “ideal” patient outcomes,
mental as strategies to handle patient outcomes are less
than ideal.

5:30 PM ADJOURN

TUESDAY, April 21, 2015

8:00 AM-11:30 AM
Room: Celebrity E-H

8:00 AM INTRODUCTION

8:15 AM BRINGING THE TEAM TOGETHER TO REACH
THE "IDEAL": A PEDIATRIC PERSPECTIVE
Carrie Heike, MD, MS, Kelly Evans, MD

Children with oro-facial clefts require multidisciplinary,
longitudinal, and coordinated care. The goal for this
presentation is to provide an overview of the medical
considerations for children with clefting. We will discuss
considerations for evaluation of overall health, growth,
feeding, sleep-disordered breathing, preventative dental and
medical care, associated anomalies, eustachian tube
dysfunction, surgical readiness, school performance, and other
appearance-related concerns (e.g. acne). We will provide a
pediatric perspective regarding holistic team care for children
with multiple providers and different treatment options. We
will also briefly discuss our experience using a clinical pathway
designed to track specific aspects of surgical readiness for
infants undergoing primary lip repair in order to facilitate
discussion on optimal ways to monitor overall health.

9:15 AM PARTICIPATING IN MULTI INSTITUTION STUDIES
— HOW CAN MY TEAM GET INVOLVED
Thomas Sitzman, MD

This presentation will discuss opportunities for cleft teams
to participate in multi-institutional studies evaluating cleft
outcomes. Results of previous multi-institutional studies
will be highlighted. Ongoing studies will then be reviewed
and details provided on how to join these studies.
The opportunities to improve patient outcomes through
multi-institutional studies will be highlighted using examples
from multiple domains. The challenges of teams to
participating in these studies will also be addressed with
potential approaches to overcome these hurdles.

9:45 AM PANEL: LET’S GET REAL — BALANCING CLINICAL
WORK, OUTCOMES ASSESSMENT AND
PROFESSIONAL REIMBURSEMENT
Carrie Heike, MD, MS

Each learner will be able to identify strategies to successfully
begin or continue outcome based studies within their team.

10:15 AM BREAK

10:30 AM PANEL: PULLING IT TOGETHER — DEVELOPING
A ROAD MAP/PLAYBOOK TO BRING THIS BACK
TO OUR TEAM
Thomas Samson, MD

Each learner will be able to identify a strategy to get
themselves and their team involved in outcomes research.

11:30 AM ADJOURN
Symposium Faculty

Amy L. Conrad, PhD is a psychologist at the University of Iowa, who has worked in the research of learning and psychosocial outcomes among children with oral clefts since 2005. As an Assistant Professor in the Stead Family Department of Pediatrics, she conducts clinical assessment of learning and attention disorders. Her research uses standardized assessment and both structural and functional MRI to better understand the development of language and reading disorders in children with oral clefts. She is a member and past co-chair of the Society of Pediatric Psychology Craniofacial Special Interest Group and is a member of the AmeriCleft psychosocial team.

Mary Michaeleen Cradock, PhD is a pediatric psychologist at the St. Louis Children's Hospital. She specializes in the assessment and treatment of young children with medical or developmental concerns including those with high risk neonatal history, craniofacial conditions, and other chronic medical conditions. Her clinical interests include the assessment and treatment of children with medical or developmental concerns, early childhood mental health issues, and parent-child relationship improvement.

Todd C. Edwards, PhD is a Research Assistant Professor in Health Services at the University of Washington School of Public Health. He is a founding member of the Seattle Quality of Life Group. His interests include development, validation and application of patient and observer-reported measures of signs/symptoms, function, and quality of life across a variety of populations and health conditions, including pediatric craniofacial conditions. Dr. Edwards is also involved in work developing and applying patient-centered clinical tools for screening and support of treatment decisions. He teaches the course “Assessing Outcomes in Health and Medicine” at the University of Washington.

Kelly Evans, MD is a pediatrician and clinician-scientist in the Seattle Children's Craniofacial Center and faculty member of the University of Washington. She provides medical management and care coordination for children with craniofacial conditions in the outpatient clinic and hospital setting. Her clinical research focuses on optimizing outcomes for infants with Robin sequence. She participates in clinical protocol development and improvement projects, along with multidisciplinary outcomes research.

* David Fitzsimons, BS is a Clinical Specialist Speech Pathologist from The Children's Hospital at Westmead in Sydney, Australia. David is the lead clinician on the hospital's Cleft Palate Team and is highly experienced in the perceptual assessment of cleft palate speech as well as the objective assessment of velopharyngeal insufficiency (VPI). David is also experienced in relational database development and has designed and constructed a number of Hospital-based clinical databases including three systems specifically designed for the management of children with cleft lip and palate. David is currently co-project managing a clinical redesign project in cleft and craniofacial care within The Sydney Children’s Hospital’s Network and is also completing his PhD through the University of Sydney. The presenter has disclosed that he is the developer of the “Crux Cleft Palate Database” software. Any description of the functionality of the database that may appear as part of this presentation are for educational and illustrative purposes only. The Crux Cleft Palate Database is not for sale, and David is not receiving or soliciting any financial benefits related to this presentation.

* Lynn Marty Grames, MA, CCC-SLP has served as a speech-language pathologist with the Cleft Palate and Craniofacial Institute at St. Louis Children’s Hospital for thirty years. Her focus includes articulation therapy for children with cleft palate; velopharyngeal imaging and management, and clinical research. She is an instructor at Saint Louis University in the Department of Communication Sciences and Disorders and at the Center for Advanced Dental Education. The presenter has disclosed that she receives salary in part for collection and analysis of clinical outcome data.

Carrie Heike, MD, MS is a pediatrician and clinician-scientist in the Seattle Children's Craniofacial Center. She has participated on the multidisciplinary team by diagnosing and managing patients with complex craniofacial conditions in both the outpatient and inpatient settings for over 10 years. She spends half of her time caring for children with craniofacial conditions, and the other half conducting clinical research.

Kathleen A. Kapp-Simon, MA, PhD is a Pediatric Psychologist at Shriners Hospital for Children and Clinical Associate Professor in the Craniofacial Center, University of Illinois at Chicago. She has been an active member of a Cleft-Craniofacial Team for more than 30 years. She served as principal investigator on Maternal and Child Health and multi-site NIDCR funded studies focused on social skills development, quality of life, stigma and neurodevelopment of children with CFCs. She has been active with ACPA and CPF, serving on multiple committees, task forces, and both Councils; and she is a past president of ACPA.
Ross Long, Jr, DMD, MS, PhD is Executive Director of the Lancaster Cleft Palate Clinic, being involved in cleft care for 38 years. He is Past-President of the American Cleft Palate-Craniofacial Association, and heads the Americleft Task Force.

Joseph E. Losee, MD is the Ross H. Musgrave Endowed Professor of Pediatric Plastic Surgery and Executive Vice Chair of the Department of Plastic Surgery at the University of Pittsburgh Medical Center. He is the Plastic Surgery Program Director and Chief of the Division of Pediatric Plastic Surgery at Children’s Hospital of Pittsburgh of UPMC. Dr. Losee serves as a Director of the American Board of Plastic Surgery, President of the American Society of Craniofacial Surgeons, and past-president of the American Council of Academic Plastic Surgeons. He is an editor of “Comprehensive Cleft Care” and “Pediatric Plastic Surgery”.

Mohammad Mazaheri, MDD, DDS, MSc started his medical and dental education in September of 1950 at the University of Pennsylvania School of Medicine. He received his MD degree in 1954. In 1956, following two years of studies, he received his DDS degree from the same school, shortly after he started his residency at the Lancaster Cleft Palate Clinic. He is the recipient of three NIH grants. His research in the effect of surgery on oral facial growth lasted for twenty years with a very successful outcome and numerous publications. Dr. Mazaheri has received numerous awards for his research and clinical endeavors. He is the recipient of the American Cleft Palate-Craniofacial Association’s (ACPA) Honors and Awards, ACPA President and Distinguished Award, the Lancaster Cleft Palate Clinic and LGH Highest Physician Award, the Lancaster Health Center Humanitarian Award for being the founder of and president of this center. Dr. Mazaheri is past president of both the American Cleft Palate-Craniofacial Association and the Cleft Palate Foundation, as well as state and local medical and dental societies. He is the President and founder of the Happy Face Foundation. He is professor of surgery at Penn State Hershey Medical Center, Director Emeritus Lancaster Cleft Palate Clinic.

Thomas D. Samson, MD, FAAP, FACS has been a pediatric plastic surgeon at Penn State Hershey Medical Center and a member of the Lancaster Cleft Palate Clinic team since 2010. He completed a general surgery residency at the Mayo Clinic Arizona followed by a plastic surgery residency at Penn State Hershey and a cranio-maxillofacial fellowship at Sick Childrens Hospital, University of Toronto. Upon completion of his fellowship, he returned to Penn State and became a Co-Director of the Penn State Hershey Craniofacial Clinic as well as the Penn State Hershey Vascular Anomalies Clinic. Tom also serves as the associate program director for the Penn State Hershey Integrated Plastic Surgery Residency Program.

Thomas Sitzman, MD graduated summa cum laude from the University of Virginia in 2001. He obtained his medical degree from Duke University, where he conducted research on the genetics of craniofacial anomalies. Dr. Sitzman completed an integrated residency in Plastic and Reconstructive Surgery at the University of Wisconsin. While in residency he received a grant from the Plastic Surgery Education Foundation to support his work in detection of tissue ischemia. Dr. Sitzman completed a fellowship in pediatric plastic surgery at the prestigious Hospital for Sick Children in Toronto, Ontario. During his fellowship he obtained advanced training in management of cleft lip and palate, facial reanimation, traumatic and congenital deformities of the upper and lower extremity, sarcoma reconstruction, and brachial plexus reconstruction. Joining Cincinnati Children’s Hospital Medical Center in 2012, Dr. Sitzman is a key member of the quality improvement efforts within the Department of Surgery. He has an active practice in plastic surgery at Cincinnati Children’s.

Judith Trost-Cardamone, PhD is Professor Emeritus, California State University, Northridge and Speech Pathologist at Ventura Cleft Lip and Palate Clinic. Publications and professional development presentations have focused on description, assessment and treatment of cleft palate speech disorders. She is nationally/internationally recognized for her educational contributions, co-author of The Clinician’s Guide to Treating Cleft Palate Speech (2006), Fellow of ASHA, recipient of the 2012 ACPA Distinguished Service Award and actively involved in the Americleft Speech Outcomes Project. She has travelled as a volunteer Visiting Educator to provide and develop speech services for children with clefts in underserved regions of the world.

Karen Wong, MD MSc FRCS is a surgeon-scientist and Assistant Professor in the Division of Plastic and Reconstructive Surgery at the Hospital for Sick Children and the University of Toronto. She is completing a PhD in Health Research Methodology at McMaster University. Her clinical focus is in cleft lip and/or palate and microsurgery. Her research focus is in health services research and patient-reported outcomes, including the development of the CLEFT-Q with Dr. Anne Klassen. The CLEFT-Q project now includes a multi-national team and is supported by grant funding from the Canadian Institutes of Health Research.
The 2015 Program Committee is pleased to announce the return of the pre-conference symposium, The 2015 Team Care Primer. This program is designed for newer members of ACPA and for those who are simply interested in learning more about optimizing team care.

Continuing Education credit is not available for this program.

8:00 AM INTRODUCTION & WELCOME
Wendy-Jo Toyama, MBA, CAE
ACPA Executive Director

8:05 AM THE 5 FUNDAMENTAL LAWS OF TEAM CARE
Richard E. Kirschner, MD*
Nationwide Children’s Hospital

We all know that teamwork is essential to providing optimal care to cleft-affected children. But how does a successful team really work? What makes some teams excel while others fail to thrive? What separates great teams from groups of individuals that struggle to reach their full potential?

The 5 Fundamental Laws of Team Care will discuss the basic principles and strategies that are essential to building a winning cleft-craniofacial team. Understanding and applying these ideas, including The Law of Significance (Yes, It Takes a Team), The Law of Purpose (It Really is the Vision Thing), and the Law of the Helm (The Team Sinks or Sails on Leadership), will not only help your team fulfill its mission but also empower your team to achieve greatness. This session is designed for all team members and team leaders (which, on successful teams are truly one and the same). Learning and practicing these laws will enhance your capacity to unlock your potential and to function effectively as a team builder, allowing you to provide your patients with the best in comprehensive cleft and craniofacial care. *The author has disclosed that he receives salary as Editor, Comprehensive Cleft Care, CRC Press.

8:35 AM ORIGINS OF TEAM CARE: THE LANCASTER CLEFT PALATE CLINIC
Ross E. Long, Jr., DMD, MS, PhD
Lancaster Cleft Palate Clinic

ACPA's mission is based on the concept of multi/interdisciplinary team care. The original application of team care as applied to management of patients with clefts and craniofacial anomalies, was first developed by a Lancaster, PA orthodontist in 1938, Dr. HK Cooper. Seventy-five years later, while technology and procedures have continued to improve our treatment capabilities, the underlying principle of team care remains the same. This presentation will summarize the history and concepts of team care.

8:45 AM INTRODUCTION TO THE AMERICAN CLEFT PALATE-CRANIOFACIAL ASSOCIATION (ACPA)
Ronald Reed Hathaway, DDS, MS, MS
Cincinnati, OH

Welcome to ACPA, the home of professionals like yourself! Find out more about this organization, its new horizons and how you can become more involved.

8:55 AM UNDERSTANDING THE CLEFT PALATE FOUNDATION (CPF)
Marilyn A. Cohen, BA, LSLP
Cooper University Hospital

The Cleft Palate Foundation was originally established in 1973 as The American Cleft Palate Educational Foundation. Its goal at that time was to provide special educational symposia, both as a part of the annual ACPA meeting and as separate freestanding educational programs. That goal has evolved over the years and is now focused on patient and public education about clefts and craniofacial conditions. This presentation will highlight the major services, projects and products of the Cleft Palate Foundation and its current mission. Particular emphasis will be placed on how it supports team care, and a description of the foundation's educational materials and programs including student scholarships for both undergraduate and graduate specialty education. In addition, the types of research funding will be described. The goal of this presentation will be to familiarize the attendees with the scope and programs available through CPF.

9:05 AM THE REVITALIZATION TASK FORCE AND THE ACPA STRATEGIC PLAN
Jerry Moon, PhD, University of Iowa
Helen Sharp, PhD Western Michigan University

The Task Force on ACPA Revitalization (hereafter referred to as the RTF) was constituted following the 2012 annual meeting of the American Cleft Palate-Craniofacial Association (ACPA) to "develop ACPA's web presence to increase relevance". RTF members were asked to envision what a new organization would look like, given the mission and vision, without constraint with respect to available resources (financial or otherwise). They were asked to not consider what the ACPA currently is or does, but rather what the organization should be in order to provide the greatest benefit to its members and to be uniformly recognized as the global vanguard for promoting team care for individuals affected with cleft lip/palate and other craniofacial anomalies. Ove a two year period, 79 ACPA members brainstormed and developed a series of "solutions", or initiatives, for moving the ACPA forward in four emphasis areas Learning and Discovery, Networking and Connectivity, Leadership, and Advocacy. It was recommended that these emphasis areas be incorporated into the ACPA Strategic Plan. A new Strategic Plan for the future of the ACPA was developed during the Fall 2014 Interim Meeting of the Council. This presentation will highlight the
outcome of the Revitalization Task Force and the potential impact of its findings on the future direction of the ACPA, along with a review of the newly developed Strategic Plan for the ACPA.

9:25 AM Q&A

9:40 AM BREAK

9:55 AM ABC’S OF TEAM CARE
Lynn M. Fox, MA, MEd, CCC-SLP
UNC Craniofacial Center

This presentation will deconstruct, describe, and discuss craniofacial team formation, mission, composition, leadership, decision-making, roles, collaboration skills, communication, goals, conflict, ethics, and the team process.

10:20 AM FUNDAMENTALS OF CLINICAL RESEARCH
Carrie L. Heike, MD, MS
University of Washington,
Seattle Children’s Hospital

We have the opportunity to improve cleft and craniofacial care by contributing to high quality research. This presentation will provide a review of clinical study designs, highlight considerations for participation in research, and offer tips to get started.

10:45 AM PARAMETERS OF CARE AND THE COMMISSION ON APPROVAL OF TEAMS (CAT)
David Kuehn, Professor Emeritus
University of Illinois at Urbana-Champaign

The Commission on Approval of Teams (CAT) oversees team approval in relation to the six standards that were derived from the ACPA Parameters of Care.

11:10 AM GLOBAL ASPECTS OF TEAM CARE
John van Aalst, MD
Cincinnati Children’s Hospital

This is part of a team primer that will be presented prior to the Annual Meeting.

11:35 AM THE 5TH LAW
Richard Kirschner, MD*
Nationwide Children’s Hospital

The 5th Law will conclude the points discussed in The 5 Fundamental Laws. *The author has disclosed that he receives salary as Editor, Comprehensive Cleft Care, CRC Press.

11:45 AM Q & A

12:00 PM ADJOURN

1:00 PM 2015 Team Care Primer Luncheon (Optional)
Room: Celebrity D
TUESDAY, April 21, 2015

7:30 AM-7:30 PM
REGISTRATION
Room: Celebrity Ballroom Foyer

SPEAKER READY ROOM
Room: Celebrity Planners Office

8:00 AM-11:30 AM
PRE-CONFERENCE SYMPOSIUM (CONTINUED):
WHAT IS THE “IDEAL” TREATMENT OUTCOME
FOR A CHILD WITH A CLEFT?
Room: Celebrity E-H

8:00 AM-1:00 PM
ACPA PRIMER FOR CLEFT CARE PROVIDERS
(Lunch Optional)
Room: Celebrity D

12:00 PM-1:30 PM
ACPA/CPF COMMITTEE CHAIR LUNCHEON
Room: Rancho-Mirage

1:30 PM-6:30 PM
ACPA/CPF COMMITTEE MEETINGS

3:00 PM-5:00 PM
EXHIBIT SET-UP

5:00 PM-6:00 PM
NEW MEMBER ORIENTATION
Room: Rancho-Mirage

6:30 PM-8:30 PM
PRESIDENT’S WELCOMING RECEPTION
Join ACPA President Ronald R. Hathaway, DDS, MS, MS and CPF President Marilyn Cohen, LSLP for cash bar and light hors d’oeuvres. Supported in part by KLS Martin Group and 3D Systems – Medical Modeling.
Room: Masters Plaza (outdoor)

WEDNESDAY, April 22, 2015

6:30 AM-6:30 PM
REGISTRATION/SPEAKER READY ROOM OPEN

7:00 AM-1:00 PM
POSTER SESSION A
Room: Celebrity Patio

7:00 AM-5:00 PM
EXHIBITS
Room: Celebrity Foyer

7:30 AM-8:20 AM
PAST PRESIDENTS’ BREAKFAST
Open only to past presidents of ACPA & CPF

1:30 PM-6:30 PM
POSTER SESSION B
Room: Celebrity Patio

EYE OPENERS — GROUP 1
7:00 AM-8:00 AM

*Separate registration fee required.

Codes: Instruction Level Format
B=Beginner L=Lecture
I=Intermediate H=Hands-on
A=Advanced P=Panel
V=Varied R=Roundtable

1
CLEFT PALATE CRANIOFACIAL JOURNAL (CPCI)
Educational Objective: Each learner will be able to prepare a manuscript suitable to submission to the CPCI.
This Eye Opener will be given by members of the “Cleft Palate-Craniofacial Journal” Editorial Board. Section Editors from a variety of disciplines will discuss what constitutes a good scientific manuscript, what kinds of manuscripts are accepted, and what is required by the “Cleft Palate-Craniofacial Journal.” Common problems in manuscript preparation and ways of avoiding them will be addressed. (V , L)
Jack Yu, MD, DMD
Room: Mirage

2
COMMISSION ON APPROVAL OF TEAMS (CAT)
Educational Objective: Each learner will be able to identify and use key requirements for team approval.
Compliance in relation to the six standards required for team approval will be discussed. Questions related to team approval will be addressed. (I, L)
David Kuehn, Professor Emeritus
Room: Oasis 4

3
CHALLENGING CASES OF VELOPHARYNGEAL DYSFUNCTION: SPEECH ASSESSMENT AND MANAGEMENT
Educational Objective: Each learner will be able to list several factors which may influence treatment decision-making in patients who present with challenging cases of velopharyngeal dysfunction.
Speech outcomes are of paramount importance to members of craniofacial teams, however, the decision-making process to achieve the end goal is just as important as the final result. This session explores the decision-making process involved with the management of several challenging cases of velopharyngeal dysfunction. ASHA Division 5, Speech Science and Orofacial Disorders, offers this eye opener session of case presentations to ACPA attendees. (V, P)
Kristen DeLuca, MS, CCC-SLP, Sara Kinter, MA, CCC-SLP, Jamie Perry, PhD, Angela Dixon, MA, CCC-SLP
Room: Oasis 1-3
THE AMERICLEFT PROJECT: PROGRESS AND GUIDELINES FOR PARTICIPATION IN COLLABORATIVE INTERCENTER OUTCOMES STUDIES

Educational Objective: Each learner will be able to list the requirements for participating in intercenter comparisons of outcomes, the value of that, and the progress made to date in the Americleft Project.

The Americleft Project is now in its 10th year and has carried out comparisons of over 20 protocol outcomes in 4 disciplines. Outcome measures are being developed and refined for future use and record-taking and record-keeping protocols have been established. This course will summarize this progress and future plans. (I, P)

Ross Long, Jr. DMD, MS, PhD
Room: Oasis 5-7

OPENING GENERAL SESSION
8:30 AM
Room: Celebrity

Welcome and Opening Remarks
Ronald R. Hathaway, DDS, MS, MS, ACPA President
Robert J. Havlik, MD, ACPA Vice-President and 2015 Program Committee Chair
Andrea Ray, MD, Local Arrangements Committee Chair
Marilyn Cohen, LSLP, CPF President

GENERAL SESSION 1 — KEYNOTE ADDRESS — Harold C. Slavkin, DDS
9:00 AM
Room: Celebrity

Session Chair: Ronald R. Hathaway, DDS, MS, MS
Session Co-Chair: Robert J. Havlik, MD

GENERAL SESSION I (cont.) — THE BEST OF THE OASIS – THE LEADING EDGE OF CLEFT AND CRANIOFACIAL CARE
10:30 AM-12:30 PM
Room: Celebrity

THE BIRTH, DEVELOPMENT AND FUTURE PROSPECTS FOR CRANIOFACIAL BIOLOGY

Throughout the genesis of the human face, facial expressions and the various sensory functions performed within the craniofacial-oral-dental complex – vision, hearing, speech, taste, chewing and touch – have created awe and wonder, pain and suffering, and the advent of remarkable health care for craniofacial birth defects as well as acquired craniofacial malformations resulting from trauma, burns, infections and head and neck cancers. Recent investments in fundamental biomedical research – human genetics and developmental and molecular craniofacial biology – have changed the landscape and now suggest therapeutic strategies for a number of craniofacial skeletal and soft tissue malformations. Enter regenerative medicine and dentistry, personalized medicine and dentistry, and precision health care. This presentation will provide an assessment and celebration of our past, present and future prospects for craniofacial biology and the human condition. Where did we come from? Who are we? Where are we going? This keynote address will conclude with basic, translational and clinical biological and behavioral research priorities related to craniofacial birth defects and craniofacial acquired malformations. The genesis of craniofacial and the story of the human face have important implications for both research, health professional education, and trans-professional, patient-centered, outcomes-based, comprehensive, quality and cost-effective health care for all people.

Harold (Hal) Slavkin, DDS is Professor and Dean Emeritus of the University of Southern California (USC). For nearly five decades he has engaged in biomedical research focusing on craniofacial developmental and molecular biology. He was the founding Director of the Center for Craniofacial Molecular Biology at USC. In 1995 he took a leave of absence to serve as the sixth Director of the National Institute of Dental Research (NIDR), one of the National Institutes of Health (NIH) (1995-2000). He was instrumental in the name change for the Institute to become the National Institute of Dental and Craniofacial Research (NIDCR) in 1998. He presently serves on the Board of Directors for The Los Angeles Trust for Children’s Health and focuses on the integration of primary health care with mental, vision and oral health through Wellness Centers that serve the 650,000 students and families within the Los Angeles Unified School District (LAUSD is the second largest in the nation).

10:00 AM POSTER SESSION A, EXHIBITS, COFFEE BREAK

WEDNESDAY, April 22

Opening General Session/Keynote
General Session

10:30 AM

5 HOW QUALITATIVE METHODS CAN BE USED TO ENSURE CONTENT VALIDITY IN A PATIENT REPORTED OUTCOME (PRO) INSTRUMENT FOR PATIENTS WITH CLEFT LIP AND/OR PALATE WHO VARY BY AGE AND CULTURE: DEVELOPMENT OF THE CLEFT-Q

Elena Tsangaris, Stefan Cano, Christopher Forrest, Tim Goodacre, Anne Klassen, Andrea Pusic, Karen Wong

10:40 AM

6 PRACTICE PATTERNS FOR MANAGEMENT OF VELOPHARYNGEAL DYSFUNCTION IN PATIENTS WITH 22Q11.2 DELETION SYNDROME

Kaitlyn Paine, Cynthia Solot, Ariel Pollak, Ava Skolnik, Donna McDonald-McGinn, Leanne Magee, Meg Maguire, Elaine Zackai, Oksana Jackson

10:50 AM

7 THE RELATIONSHIP BETWEEN CEACAM1, CK13, AND TGFβ IN PALATAL FUSION

Takayoshi Sakai, Aya Obana-Koshino, Hitomi Ono, Kanji Nohara, Kyoko Oka

11:00 AM

8 DISCUSSION

11:10 AM

9 COMPARISON OF CUCLP DENTAL ARCH RELATIONSHIPS BETWEEN 5 CENTERS WITH VARIED INFANT MANAGEMENT PROTOCOLS (NAM, GPP, PRIMARY GRAFTING, INFANT ORTHOPEDICS)

Stephen Beals, Patricia Glick, Ross Long, John Daskalogiannakis, Ronald Reed Hathaway, Kathleen Russell, Thomas Sitzman, Andrea Smith, Gunvor Semb, William Shaw

11:20 AM

10 A NEW CONCEPT FOR CRANIOFACIAL REPAIR USING A CHEMOTACTIC SCAFFOLD

Reza Jarrahy, Akishige Hokugo, Andres Segovia, Anisa Buck, Andrew Li, Kameron Rezzadeh

11:30 AM

11 EFFECTIVENESS OF A PHONOLOGICAL INTERVENTION FOR PRESCHOOL CHILDREN WITH NONSYNDROMIC CLEFT PALATE

Heather Thompson, Sean Redmond, Bruce Smith

11:40 AM

12 DISCUSSION

12:00 PM

12 IS CRANIOSYNOSTOSIS REPAIR KEEPING UP WITH THE TIMES? RESULTS FROM THE LARGEST NATIONAL SURVEY ON CRANIOSYNOSTOSIS

Michael Alperovich, Raj Vyas, David Staffenberg

12:10 PM

13 A SYSTEMATIC REVIEW OF THE EVIDENCE FOR NEUROTOXICITY ASSOCIATED WITH EARLY CHILDHOOD EXPOSURE TO ANESTHESIA

Donald Laub, Molly Rideout, Robert Williams

12:20 PM

14 DISCUSSION

12:30 PM-2:00 PM

12 LUNCH BREAK (on your own)

POSTER SESSION B, EXHIBITS

12 2016 PROGRAM COMMITTEE MEETING/LUNCHEON

Room: Oasis 3

13 ETHICS ROUNDTABLE — REGISTRATION REQUIRED (optional lunch available)

Room: Rancho-Mirage

3:00 PM-6:30 PM

12 CPCJ EDITORIAL BOARD LUNCHEON — (open only to Editor and Section Editors)

Room: Polo

GENERAL SESSION 2 — TEAM CARE PANEL

2:00 PM-3:00 PM

Room: Celebrity

Goal: To assist the current and the upcoming generations of Cleft and Craniofacial (CC) team care providers in forward planning for the optimization of resource utilization and patient/family outcomes.

Objective: Each learner will be able to understand the original intention of interdisciplinary Cleft/CF team care; assess the congruence or lack thereof between that intention and the current state of team care; and employ the information gained from this presentation to his/her local team.

Session Chair: Jeffrey Marsh, MD

13 INTERDISCIPLINARY CLEFT/CRANIOFACIAL TEAM CARE: AN OASIS OR A MIRAGE?

The goal of this presentation is to explore whether the concept of interdisciplinary team care for cleft and other craniofacial deformities has been fully realized from its inception in the 1920s to current
The objective of this presentation is to assist the current and the upcoming generation of team care providers in forward planning for the optimization of resource utilization and patient/family outcome.

Jeffrey Marsh, MD, Marilyn C. Jones, MD, Kathleen A. Kapp-Simon, PhD, Ross Long, Jr, DMD, MS, PhD, Jerald Moon, PhD, John E. Riski, PhD, CCC-SLP

IDEAS & INNOVATIONS — 5:00 PM-6:45 PM
Room: Celebrity

Goal: To share new ideas, techniques, case presentations, and research findings related to the management of people with cleft and craniofacial conditions.

Objective: Learners will be able to identify four innovations or new techniques that may be applied to their treatment or research of patients with cleft and craniofacial conditions.

Session Chair: Bernard Costello, MD, DMD
Session Co-Chair: Bruce Horswell, MD, DDS, MS

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00 PM</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>5:05 PM</td>
<td>IMPLEMENTING A DYNAMIC CLINIC MANAGEMENT SYSTEM AND ITS EFFECT ON CRANIOFACIAL TEAM CLINIC EFFICIENCY AND PATIENT EXPERIENCE</td>
<td>James Seaward, Rami Hallac, Alex Kane</td>
</tr>
<tr>
<td>5:10 AM</td>
<td>Z-SCORES AND MIXED EFFECT MODELING: A PRACTICAL METHOD FOR ANALYZING GROWTH PATTERNS IN CHILDREN WITH CRANIOFACIAL DISORDERS</td>
<td>Sandra Tomlinson-Hansen, Patrick Gerety, Brianne Mitchell, Jordan Swanson, Jesse Taylor</td>
</tr>
<tr>
<td>5:15 PM</td>
<td>THE USE OF A NOVEL MOBILE TECHNOLOGY PLATFORM TO FACILITATE INSTANTANEOUS HIPAA-SENSITIVE PERIOPERATIVE MESSAGING IMPROVES PATIENT CARE AND PHYSICIAN-PATIENT COMMUNICATION</td>
<td>Kameron Rezzadeh, Akishige Hokugo, Andres Segovia, Reza Jarrahy</td>
</tr>
<tr>
<td>5:20 PM</td>
<td>INCREASING LIKELIHOOD OF PARENTS PROVIDING ACCURATE FEEDING HISTORY FOR INFANTS WITH A CLEFT BY LEVERAGING THE PREVALENCE OF SMARTPHONE APPS</td>
<td>Judy Marciel, Michael Marciel</td>
</tr>
<tr>
<td>5:25 PM</td>
<td>“FACE IT WITH FRIENDS”: AN EVENT FOR TEENS WITH A HISTORY OF CLEFT LIP AND PALATE</td>
<td>Margaret Wilson, Shyla Miller, Sarah Woodhouse</td>
</tr>
<tr>
<td>5:30 PM</td>
<td>PATIENT- AND PARENT-REPORTED OUTCOMES ONE YEAR FOLLOWING AN INTERNATIONAL CLEFT MISSION</td>
<td>Ari Wes, Nadine Paul, Patrick Gerety, Jordan Swanson, Nancy Folsom, Jesse Taylor, Mark Weinstein</td>
</tr>
<tr>
<td>5:35 PM</td>
<td>IDENTIFYING GENETIC REFERRALS THROUGH DEVELOPMENTAL SCREENING IN SAGITTAL CRANIOSYNOSTOSIS: CASE EXAMPLES</td>
<td>Alexis Johns, Pedro Sanchez-Lara</td>
</tr>
<tr>
<td>5:40 PM</td>
<td>TWO-STAGED TOTAL EAR RECONSTRUCTION WITH CONCOMITANT ATRESIAPLASTY FOR PATIENTS WITH MICROTIA</td>
<td>Christopher Runyan, Angela Black, Daniel Choo, Ann Schwentker</td>
</tr>
<tr>
<td>5:45 PM</td>
<td>OPTIMAL LANDMARKS FOR THE DIAGNOSIS OF METOPIC CRANIOSYNOSTOSIS: A COMPUTATIONAL APPROACH</td>
<td>Benjamin Wood, Carlos Mendoza, Nabile Safdar, Marius Linguraru, Gary Rogers</td>
</tr>
<tr>
<td>5:50 PM</td>
<td>ANATOMICAL STUDY OF THE EFFECTS OF FIVE SURGICAL MANEUVERS ON NASAL MUCOSA MOVEMENT</td>
<td>Dennis Nguyen, Kamlesh Patel, Gary Skolnick, Albert Woo</td>
</tr>
<tr>
<td>5:55 PM</td>
<td>EFFICACY OF THE VOMER FLAP DURING CLEFT LIP REPAIR FOR CLOSURE OF ANTERIOR PALATE</td>
<td>Gaurav Deshpande, Lisa Wendby, Björn Schönmeyr, Carolina Restrepo</td>
</tr>
<tr>
<td>6:00 PM</td>
<td>THE ELECTRONIC TABLET AS A TEACHING TOOL FOR MARKING CLEFT LIP</td>
<td>Björn Schönmeyr, Gaurav Deshpande, Carolina Restrepo</td>
</tr>
<tr>
<td>6:05 PM</td>
<td>PRIMARY ABBE FLAP FOR MIDLINE AND SEVERE BILATERAL CLEFT LIP DEFORMITY: NEW TRENDS ON AN OLD CONCEPT</td>
<td>Jordan Steinberg, Colin Brady, Fernando Burstine</td>
</tr>
<tr>
<td>6:10 PM</td>
<td>COMPUTER SIMULATED NEONATAL DISTRACTION OSTEOGENESIS</td>
<td>Sidney Eisig, Caitlyn Magraw, Michael Perrino, Austin Daly</td>
</tr>
</tbody>
</table>
6:15 PM 30
PANCRANIOSYNOSTOSIS FOLLOWING ENDOSCOPIC-ASSOCIATED STRIP CRANIECTOMY FOR SAGITTAL CRANIOSYNOSTOSIS IN THE SETTING OF POOR COMPLIANCE WITH FOLLOW-UP: A CASE REPORT
Isak Goodwin, Dana Johns, Barbu Gociman, Faizi Siddiqi

6:20 PM 30
DOES A REPORTED CONFLICT OF INTEREST AFFECT STUDY OUTCOMES IN HELMET THERAPY FOR POSITIONAL PLAGIOCEPHALY?
Vincent Noori, John van Aalst

6:25 PM 31
STICKLER SYNDROME: IMPORTANCE OF MULTIDISCIPLINARY ASSESSMENT OF ENTIRE FAMILY!
Elena Hopkins, Deborah Alcorn

6:30 PM 32
TREATING SPANISH SPEAKERS WITH CLEFT PALATE AND CRANIOFACIAL CONDITIONS: CLINICAL CONSIDERATIONS, ADAPTATIONS, AND RESOURCES
Diana Acevedo

6:35 PM 33
SPECIALTY COURSE AND CLINIC IN CLEFT AND CRANIOFACIAL DISORDERS: A UNIQUE TRAINING EXPERIENCE FOR GRADUATE SPEECH – LANGUAGE PATHOLOGY STUDENTS
Kerry Mandulak, Caitlin McDonnell, Janet Brockman, Kameron Beaulieu

6:45 PM ADJOURN

DOCIENCE FORUMS

Back by popular demand, these informal professional networking opportunities will be held Wednesday afternoon from 3:15-4:45 pm. First organized at the 2013 International Congress, reports from forum leaders indicated a wide range of topics and information was exchanged, but even more importantly, connections were made. This is your opportunity to ‘meet and greet’ colleagues in your discipline from around the world. Forum specialties and room assignments are:

- Genetics/Pediatrics ..Oasis 1
- Mental Health ..Oasis 7
- Nurse/Coordinators & Speech-Language Pathology/
 Audiology ..Rancho-Mirage
- Oral-Maxillofacial SurgeryOasis 2
- Orthodontics/ProsthodonticsOasis 4
- Otolaryngology ...Oasis 3
- Pediatric Dentistry ...Oasis 5
- Plastic Surgery ...Ambassador Foyer
- Research ...Oasis 6

AMERICLEFT SPEECH MEET & GREET
6:45 PM-8:15 PM
Room: Rancho-Mirage

THURSDAY, April 23, 2015

6:30 AM-6:00 PM
REGISTRATION/SPEAKER READY ROOM OPEN

7:00 AM-5:00 PM
EXHIBITS, POSTER SESSION C

EYE OPENERS — GROUP 2
7:00 AM-8:00 AM

*Separate registration fee required.

Codes: Instruction Level Format
B=Beginner L=Lecture
I=Intermediate H=Hands-on
A=Advanced P=Panel
V=Varied R=Roundtable

5
COMPREHENSIVE REVIEW AND SUMMARY OF LAWS AND REGULATIONS RELEVANT TO CHILDREN WITH OROFACIAL CLEFTS
Educational Objective: Each learner will be able to:
- identify state laws relevant to children with OFC;
- examine private insurance benefits; define “medically necessary”; and list eligibility for Medicaid orthodontic services. In order to better understand the barriers many families face in obtaining treatment and services for children with orofacial clefts, we conducted a comprehensive review of state and federal laws and mandates to examine the variability of private insurance benefits, Medicaid definitions of “medically necessary” procedures, and Medicaid eligibility for orthodontic services. (B, R)
Margot Neufeld, MA, Tanya Wanchek, PhD, JD, Cynthia H. Cassell, PhD
Room: Oasis 4

6
SPEECH THERAPY TECHNIQUES FOR COMPENSATORY ARTICULATION PATTERNS
Educational Objective: Each learner will be able to describe and demonstrate speech therapy techniques for compensatory articulation patterns often related to craniofacial disorders.
Compensatory articulation patterns will be described and demonstrated to assist in the identification of these patterns. Current methods of treating compensatory misarticulation patterns will be described through lecture, demonstration and audience participation.
Participants will also brainstorm creative ways to actively engage patients in therapy sessions. (B, H)

Lynn Fox, MA, Med, Sarah Reid, MA

Room: Oasis 1-2

FEEDING PROBLEMS AND SOLUTIONS IN BABIES WITH CLEFT PALATE

Educational Objective: Each learner will be able to describe 3 techniques to facilitate efficient intake by bottle in babies with cleft palate.

This session will provide knowledge about specialty bottles and finding the right match between baby, bottle and parent. Case presentations, hands-on experience with bottles, evaluation techniques, and tips for adapting bottles will be discussed along with positioning techniques, breast feeding questions, oral intake post-op, and introduction of solids. Common feeding problems, special issues with PRS, tracheostomy and reflux, and discussion of measurable goals will be presented. (B, L)

Kathleen Borowitz, MS, CCC-SLP

Room: Rancho

ANATOMY OF THE UNILATERAL CLEFT LIP NASAL DEFORMITY

Educational Objective: Each learner will be able to understand the anatomic components of the unilateral cleft lip nasal deformity. They will also be able to understand the aims of primary surgical correction.

This session will be in a lecture format, presenting anatomic studies related to normal and unilateral cleft lip nasal anatomy. The talk will focus on the following components of the nose: • Nasal bones • Septum • Piriform • Alar base • Upper lateral cartilages • Lower lateral cartilages Surgical approaches to correct each of the individual components of the unilateral cleft lip nasal deformity will be shown. Outcome studies of various maneuvers used in primary correction will be reviewed. (V, L)

Kamlesh Patel, MD

Room: Polo

MAKING THE MOST OF PRENATAL COUNSELING OPPORTUNITIES

Educational Objective: Each learner will be able to assess families’ readiness to learn and knowledge deficits pertaining to a potentially stressful prenatal cleft diagnosis. Learners will be able to identify information the family has already received and clarify or build on this information based on the practices of their team.

The goal of this presentation is to promote competence and confidence in basic prenatal cleft counseling. A variety of scenarios will be presented and recommendations will be made regarding the purpose, content and structure of a prenatal counseling session.

Suggestions will also be made regarding handouts, resources and visual aids to facilitate teaching during the counseling session. (B, L)

Karla Haynes, RN, MPH, MS, CPNP, Irene Klecha, RN, MSN

Room: Oasis 5-7

INNOVATION IN CLEFT PALATE RECONSTRUCTIVE SURGERY: HOW TO USE BUCCAL MYOMUCOSAL FLAPS

Educational Objective: Each learner will increase their knowledge of the anatomy of the Buccal Flap. The learner will be able to effectively utilize the Buccinator Myomucosal Flap for primary and secondary cleft palate repair, and the treatment of primary VPI in patients without clefts.

By adding the Buccal Flap to your cleft palate treatment plan, you can improve your patients speech, reduce the number of secondary speech surgeries, lower your fistula rates and minimize your orthognathic surgical challenges. The lectures, slides and videos will teach you to easily incorporate this very useful tool into your cleft palate program. (V, L)

Robert Mann, MD, Michael Burton, MD

Room: Mirage

PREPARING YOUR PATIENT FOR JAW SURGERY – A MULTIDISCIPLINARY APPROACH TO A PATIENT CENTERED JAW SURGERY WORKSHOP

Educational Objective: Each learner will be able to learn why it is important to prepare patients for jaw surgery and how to conduct a jaw surgery preparation workshop in their medical setting.

Patients undergoing jaw surgery often experience medical and psychosocial concerns that impact their pre and post surgery adjustment. Offering education and support often results in a patient’s increased ability to cope with the surgical process and positively impacts the outcome. A multidisciplinary team model for preparing patients who are undergoing jaw surgery will be presented. Information from the different disciplines will be shared as well as video highlights. (V, L)

Carolyne Garrison Howard, PhD, Laura Takeuchi, MPA, CCLS

Room: Celebrity A
PAUL BLACK JUNIOR INVESTIGATOR SESSION
8:00 AM-10:00 AM
Room: Celebrity D-E

Goal: To encourage and support multidisciplinary research by investigators in or recently graduated from training programs dealing with cleft and craniofacial evaluation and treatment.

Objective: Learners will be able to discuss three research questions related to cleft and craniofacial care.

Session Chair: Harold Slavkin, DDS
Session Co-Chair: Koichi Otsuki, DDS

8:00 AM
IMPACT OF A CLEFT AND CRANIOFACIAL CENTER ON A HEALTH CARE SYSTEM
Navid Pourtaheri, Craig Anderson, David Blankfield, Aaron Kearney, Derrick Wan, Gregory Lakin

8:10 AM
MITIGATION OF SHP2 AND GRB2 ACTIVATION PREVENTS ABERRANT FGFR2 SIGNALING-INDUCED CRANIOSYNOSTOSIS THROUGH AN ERK-MAPK-DEPENDENT PATHWAY
Miles Pfaff, Li Li, Eswarakumar Veraragavan

8:20 AM
SPONTANEOUS FOREHEAD REMODELING AFTER POSTERIOR VAULT RECONSTRUCTION IN SAGITTAL SYNTSTOSIS
Jose Gonzalez, Olivia Linden, Margaret Byrne, Petra Klinge, Stephen Sullivan, Helena Taylor

8:30 AM
DISCUSSION

8:40 AM
SPEECH OUTCOMES FOLLOWING CLINICALLY INDICATED POSTERIOR PHARYNGEAL FLAP TAKEDOWN
Evan Katzel, Sanjay Naran, Zoe MacIsaac, Liliana Camison, Jesse Goldstein, Lorelei Grunwaldt, Matthew Ford, Joseph Losee

8:50 AM
LEVATOR VELI PALATINI MUSCLE LENGTH CHANGES AND VELOCITIES VARY ACROSS SOUNDS
Catherine Pelland, Joshua Inouye, Kathleen Borowitz, Kant Lin, Silvia Blemker

9:00 AM
TIMING OF FURLOW PALATOPLASTY FOR PATIENTS WITH SUBMUCOUS CLEFT PALATE
Russell Ettinger, Theodore Kung, Natalie Wombacher, Haskell Newman, Steven Buchman, Steve Kasten

9:10 AM
DISCUSSION

9:20 AM
NORMATIVE VELOPHARYNGEAL DATA IN INFANTS: IMPLICATIONS FOR TREATMENT OF CLEFT PALATE
Graham Schenck, Jamie Perry

9:30 AM
RECURRENT OTITIS MEDIA WITH EFFUSION AS A PREDICTOR OF VELOPHARYNGEAL INSUFFICIENCY REQUIRING SECONDARY PALATE SURGERY
Lauren Hanes, Amanda Murphy, Raylene Delorey, Jill Hatchette, Paul Hong, Michael Bezuhly

9:40 AM
DIFFICULTIES IN TIMING PERCEPTION RELATED TO ABNORMAL BRAIN STRUCTURE IN CHILDREN AND ADOLESCENTS WITH NONSYNDROMIC CLEFT LIP AND/OR CLEFT PALATE
Ian DeVolder, Amy Conrad, Vincent Magnotta, Peg Nopoulos

9:50 AM
DISCUSSION

10:00 AM
POSTER SESSION C, EXHIBITS, COFFEE BREAK

GENERAL SESSION 3 — OUTCOMES IN CLEFT AND CRANIOFACIAL CARE
10:30 AM-11:45 AM
Room: Celebrity D-E

Goal: To present outcomes in cleft and craniofacial care, and to describe findings related to needs of adults affected by cleft and craniofacial conditions.

Objective: Learners will be able to 1) identify two patient outcomes related to cleft and craniofacial care, and 2) explain identified needs of adults affected by cleft and craniofacial conditions.

Session Chair: Amelia Drake, MD
Session Co-Chair: Alex Kane, MD

10:30 AM
THE UNIQUE NEEDS OF INCOMPLETELY TREATED ADULT PATIENTS WITH CLEFT LIP AND/OR PALATE
Tuan Truong, Katharine Connolly, Davinder Singh, Edward Joganic, Patricia Glick, Stephen Beals

10:40 AM
CONTINUING MEDICAL AND DENTAL NEEDS OF ADULTS WITH CLEFT LIP AND/OR PALATE: A NEEDS ASSESSMENT
Maureen Libby, Emet Schneiderman, Ann McCann, Alex Kane
THURSDAY, April 23
General Session/Study Sessions

10:50 AM OUTSIDE, INSIDE: YOU DECIDE MIDDLE-SCHOOL PROGRAM FOSTERS ACCEPTANCE AND APPRECIATION OF THOSE WHO HAVE VISIBLE DIFFERENCES
Charlene Pell

11:00 AM DISCUSSION

11:10 AM NON-SYNDROMIC SAGITTAL SYNOSTOSIS. A NORDIC MULTI-CENTER STUDY
Sven Kreiborg, Tron A. Darvann, Lars Bøgeskov, Leif Christensen, Bernt Due-Tønnessen, Stense Farholt, Ketil Heimdal, Arja Heliovaara, Jyri Hukki, Hanne Dahlgaard Hove

11:20 AM PRESENTING CHARACTERISTICS AND MANAGEMENT OF SUBMUCOUS CLEFT PALATE: A SINGLE CENTER REVIEW SPANNING 16 YEARS
Solomon Obiri-Yeboah, Peter Ray, Nadia Abou Kheir, John Grant

11:30 AM TIMING OF PALATOPLASTY AND SPEECH OUTCOMES IN SUBMUCOUS CLEFT PALATE
Jordan Swanson, Marilyn Cohen, Brianne Mitchell, Cynthia B. Solot, Oksana Jackson, Jesse Taylor

11:40 AM DISCUSSION

11:45 AM BREAK FOR LUNCH

12:00 PM-2:00 PM ACPA/CPF ANNUAL AWARDS LUNCHEON
Presentation of ACPA Honors, CPF Leadership Award, announcements of CPF Research Grant, Junior Investigator, Journal, and Scholarship Recipients; ASCFS Award Winners
Room: Ambassador Ballroom

2:15 PM EXHIBITS, POSTER SESSION C

A. THE AMERICLEFT LISTENER RATINGS PROTOCOL: A CALIBRATION SESSION FOR SPEECH-LANGUAGE PATHOLOGISTS
Educational Objective: Each learner will be able to describe the Americleft Speech Outcomes Project and have knowledge in applying it for rating resonance distortions, articulation, and audible nasal air emission/turbulence in speakers with cleft palate and velopharyngeal dysfunction.

Valid and reliable perceptual speech ratings are needed for outcome measurements for individuals with CP and VPD. This course aims to facilitate skills for rating resonance and articulation characteristics using protocols developed for the Americleft Speech Outcomes Project. Using interactive polling software, participants will rate speech samples. Audience ratings will be displayed for discussion. Principles of consensus listening and listener guidelines from Americleft will be applied. (V, H)
Anna Thurmes MA, CCC, Kelly Nett Cordero, PhD, Judith Troy Cardamone, PhD, Kathy Chapman, PhD, Cindy Dobbelsteyn, MSc, Kristina Wilson, PhD, Adriane Baylis, PhD, Angela J. Dixon, MA
Room: Oasis 5-7

B. MEDICAL MANAGEMENT AND SURVEILLANCE PROTOCOLS FOR COMPLEX CRANIOFACIAL CONDITIONS
Educational Objective: For each of four craniofacial conditions discussed, each learner will be able to describe diagnostic criteria and confirmatory testing, identify at least one health concern that could impact surgical readiness or result in an adverse outcome, and list one age-specific health care recommendation.

In this interactive course, attendees will review management protocols for children with four craniofacial conditions: Facial hemangiomas, Craniofacial plexiform neurofibromas, Hemihyperplasia, and Ectodermal Dysplasias. After this course, learners will be able to 1) define diagnostic criteria and confirmatory studies, 2) identify health concerns that could impact surgical readiness or result in an adverse outcome, and 3) provide critical appraisal of a health care supervision timeline. (V,P)
Ann Hing, MD, Robert Byrd, MD, MPH, Michael L. Cunningham, MD, PhD, Katrina M. Dipple, MD, PhD, Kelly Evans, MD, Emily R. Gallagher, MD, MPH, Yvonne R. Gutierrez, MD, Ophir D. Klein, MD, PhD, Howard M. Saal, MD
Room: Polo

Codes:
Instruction Level
B=Beginner
I=Intermediate
A=Advanced
V=Varied
Format
L=Lecture
H=Hands-on
P=Panel
R=Roundtable

*Separate registration fee required.
C. NARRATIVE VIDEO THERAPY: PSYCHOTHERAPY WORKSHOPS FOR CHILDREN, ADOLESCENTS AND ADULTS

Educational Objective: Each learner will be able to attain information about the psychosocial concerns of individuals who have craniofacial differences and will be able to list 4 topics of primary concern. Each learner will be able to define the concept of narrative video therapy and 3 ways it is useful in a therapeutic setting.

This study session will present a psychotherapeutic individual/group approach called Narrative Video Therapy for children, teens and adults with CF differences. NVT originated out of a need our patients had to meet others with similar medical conditions and to share experiences and ways of coping. Program development, provision of our semi-structured interview, viewing of videos, and sharing information about grants/funding and the challenges of center based programs will be discussed. (V,L)

Aileen Blitz, PhD
Room: Oasis 3

D. GUIDELINES FOR ACADEMIC AND CLINICAL TRAINING FOR THE CLEFT TEAM SLP

Educational Objective: Each learner will be able to describe the roles, responsibilities, and prerequisite knowledge and skills for SLPs working on a cleft palate team.

This session will review and describe the multiple pathways that students, clinical fellows, and/or SLP clinicians that are new to the cleft palate team, may take as they embark on the process of obtaining clinical expertise in cleft/craniofacial anomalies and velopharyngeal dysfunction. This course will be of interest to students, professors, SLPs, and team leaders or surgeons interested in better understanding the required knowledge and skills for SLPs practicing in the cleft team setting. (B, L)

Adriane Baylis, PhD, CCC-SLP, Kerry Mandulak, PhD, Mary O’Gara, MA, CCC-SLP, Helen Sharp, PhD
Room: Oasis 1-2

E. PRACTICAL GUIDELINES FOR MANAGING PATIENTS WITH 22Q11.2 DELETION SYNDROME

Educational Objective: Each learner will be able to describe the associated features of the 22q11.2 deletion syndrome including speech, palatal, and behavioral phenotypes.

22q11.2 deletion syndrome is the most common cause of syndromic palatal anomalies but systematic guidance for clinical management has been limited. In response, we present The International 22q11.2 Consortium Practical Healthcare Guidelines which transcend subspecialty bias to include: an overview of the condition and associated features; speech, language and behavioral differences; the approach to surgical interventions; and the need for coordinated multidisciplinary perioperative care. (V, P)

Donna McDonald-McGinn, MS, LCGC, Oksana Jackson, MD, Cynthia Solot, MA, CCC, Meg Maguire, Anne S. Bassett
Room: Celebrity B

F. HOW TO TELL THE DIFFERENCE BETWEEN NON-ADHERENCE AND RISK: ASSESSING NEGLECT AND ABUSE IN THE CRANIOFACIAL POPULATION

Educational Objective: Each learner will be able to identify examples of neglect and/or abuse indicators in the craniofacial population. They will learn techniques to both support families to be successful while also monitoring the health and safety of patients. Personal and professional ethics will be reviewed.

Making decisions regarding the referral to child protection when there is suspicion of child abuse and/or neglect is complicated. Defining when a situation requires a mandatory report versus one that represents a viable treatment choice or lifestyle that is safe for a child is difficult. After attending this session, participants will have reviewed concerns of abuse/neglect, but applied it to their patients and their own responsibilities as they relate to their professional obligations. (V, L)

Cassandra Aspinall, MSW, ACSW, LICSW, Ashley Peter, MSW, LICSW
Room: Rancho

G. MAKING SENSE OF NASAL AIR EMISSION: CHARACTERISTICS OF OBLIGATORY AND LEARNED BEHAVIORS

Educational Objective: Each learner will identify the perceptual and acoustical differences between obligatory and learned speech behavior resulting in nasal emission, apply acoustic instrumentation to facilitate their identification, and discuss treatment considerations based on perceptual and acoustic findings.

It can be a clinical challenge in determining whether nasal emission is an obligatory or learned speech pattern. Acoustic studies have the capability to detect the differences in the articulatory behavior between these two categories. The purpose of this presentation is to identify the perceptual features associated with obligatory and learned patterns of nasal emission and to demonstrate the Nasometer’s recording capacity to analyze the oral and nasal signals that differentiate them. (V, L)

Linda D. Vallino, PhD, David J. Zajac, PhD
Room: Mirage
ENDOSCOPIC CRANIOSYNOSTOSIS SURGERY

Educational Objective: Each learner will be able to identify and discuss practical aspects of conducting an endoscopic craniosynostosis program.

This course will focus primarily on the practical aspects of endoscopic management and review technical considerations from a multidisciplinary perspective. We will focus specifically on 4 particular disciplines: plastic surgery, neurosurgery, nursing and orthotics. The long-term experience at a single institution with >150 endoscopic cases will be reviewed and a discussion will be held regarding modifications to treatment protocols which have developed during this time. (I, L)

Albert Woo, MD, Kamlesh Patel, MD, Matthew Smyth, MD, Sybill Naidoo, PhD, RN, CPNP, Douglas Reber, CO, LO

Room: Celebrity A

CLEFT ORTHOGNATHIC SURGERY

Educational Objective: Each learner will be able to:
1) understand the surgical-orthodontic considerations in the cleft dentofacial deformity, 2) recognize the criteria to be deemed ready for orthognathic surgery in a cleft patient, 3) understand and implement the technical steps and modifications to perform cleft orthognathic surgery.

This course will focus on cleft orthognathic surgery; including orthodontic setup; surgical preparation, technical aspects, and controversies, including management of the lateral region, distraction, and 3D planning. (A, L)

Derek Steinbacher, DMD, MD, Anand Kumar, MD, Lindsay Schuster, DMD, MS

Room: Oasis 4

THE FURLOW PALATOPLASTY: OPTIMIZING OUTCOMES THROUGH SURGICAL TECHNIQUE

Educational Objective: Each learner will be able to increase their understanding of the Furlow double opposing Z-palatoplasty.

The Furlow palatoplasty may be used to achieve excellent results in both primary and secondary palate repair. This course will provide a review of the surgical technique while providing tips to facilitate its execution and optimize results. Using a standard lecture format, the history and key concepts of the Furlow Z-palatoplasty will be reviewed. A video presentation will illustrate the technique in a step-by-step fashion. The course will conclude with a question and answer session. (V, L)

Richard Kirschner, MD

Room: Celebrity C

SPEECH OUTCOME DATA: TECHNIQUES FOR DATA COLLECTION AND MANAGEMENT WITHIN THE CLINICAL SETTING

Educational Objective: Each learner will be able to list equipment used in obtaining audio and video recordings for speech outcome studies.

This session shares methods for outcome data collection that have grown out of the Americleft Speech Group’s experience. The development of protocols will be discussed, with the focus on data collection, storage, and analysis. Audio and visual recording equipment and strategies for obtaining a quality recording will be illustrated. Various technologies will be discussed, including web-based products and a database that increases efficiency while maintaining compliance with HIPAA and the IRB. (B, L)

Kristina Wilson, PhD, CCC-SLP, Angela J. Dixon, MA, CCC-SLP, Adrian Baylis, PhD, CCC-SLP, Kelly Nett Cordero, PhD, CCC-SLP, Anna Thurmes, MA, CCC-SLP, Cindy Dobbelsteyn, MSc, SLP(C), Judith E Trost-Cardamone, PhD, CCC-SLP, Kathy L. Chapman, Ph.D.

Room: Oasis 3

MULTIDISCIPLINARY STRATEGIES TO AVOID AND TO TREAT SHORT AND LONG-TERM COMPLICATIONS OF NEONATAL MANDIBULAR DISTRACTION

Educational Objective: Each learner will be able to identify appropriate patients for mandibular distraction and understand surgical techniques to avoid complication.

In many institutions, mandibular distraction has become the primary management of the neonate with a hypoplastic mandible and respiratory compromise. This course will emphasize a multidisciplinary approach to selection of patients and the techniques of surgical planning including the use of medical modeling, with particular emphasis on principles to avoid complications. Complications will be discussed, including treatment. (A, L)

Michael Lipka, MD, DMD, Jeffrey Goldstein, MD

Room: Celebrity C
The nature of VPD in 22q11DS is complex, thus treatment planning and surgical technique must be tailored to syndrome-specific and patient-specific factors to optimize outcome. This masters’ class will provide a comprehensive overview of the multifactorial nature of VPD in 22q and algorithms for successful surgical-speech management. Attendees will be able to describe syndrome-specific considerations for presurgical infant orthopedics and will demonstrate how NAM addresses traditional methods and objectives of presurgical infant orthopedics.

In this session, the presenter will describe the nasopharyngoscopy procedure, including tips and tricks to elicit cooperation from even very young children.
aspects of cleft orthognathic surgery 3) timing and technical aspects of dental implants 4) Dental, Orthodontic and Prosthodontic integration.

This study session will provide a comprehensive discussion focusing on dento-skeletal aspects from birth, through adulthood through an integrated surgical, dental, orthodontic and prosthodontic management. The session will focus on infant orthopedic appliances, timing of cleft alveolar bone grafting, indications for premaxillary repositioning, management of cleft orthognathic surgery, dental and orthodontic intervention and prosthodontic management with osseointegrated implants and bridges. (V, L)

Pravin Patel, MD, Ronald Jacobson, DDS, MS, Kirk Kollman, DDS, David E. Morris, MD, David Reisberg, DDS
Room: Mirage

PATIENT TREATMENT BURNOUT FOR INDIVIDUALS WITH CLEFT AND CRANIOFACIAL CONDITIONS

Educational Objective: Each learner will be able to discuss and identify: 1) indirect implications/challenges of treatment on patients’ lives outside the medical model. Each learner will be able to recognize the impacts of missing obligations: professional, educational, social, extracurricular, familial. Each learner will be able to explore unexpected negative impacts of surgery from the patient perspective.

When working with patients and families it is important for Health Care Professionals to be aware of implications that treatment can have beyond the medical model. Qualitative research indicates that the impact of surgical treatment is multifaceted and is a recurring concern for patients. By recognizing patients as experts in their own experience, Health Care Professionals should maintain an alliance with patients in order to create an implement an effective treatment plan. (I, L)

Colleen Wheatley, MSW, RSW
Room: Polo

CLEFT CARE FOR INTERNATIONALLY ADOPTED CHILDREN: CHALLENGES AND STRATEGIES

Educational Objective: Each learner will be able to recognize key aspects of international adoptive process, post adoptive consulting and surgical challenges that are faced by patients with cleft who are adopted.

International adoption is on the rise in the US. Large percentage of the adoptees have cleft differences. Due to their care in their birth countries, they face a variety of challenges not routinely encountered by US born patients with cleft. Cleft care for this particular population needs to take into consideration many factors such as nutrition, infection control, prior surgeries and family integration. Care should be provided in a coordinated manner with the focus on the whole patient. (V, L)

Shao Jiang, MD, Alison Kaye
Room: Celebrity A
FRIDAY, April 24, 2015

Concurrent Sessions

8:30 AM
79 GLOBAL ACADEMIC FAILURE IN THIRD GRADE AMONG CHILDREN WITH AN ISOLATED NONSYNDROMIC CLEFT: A POPULATION BASED STUDY IN NORTH CAROLINA
Stephanie Watkins, Robert Meyer, Arthur Aylsworth, Ronald Strauss

8:40 AM
85 PHARYNGEAL FLAP OUTCOMES BASED UPON AERODYNAMIC ASSESSMENT OF ORAL AND NASAL SPEECH SEGMENTS: PRELIMINARY FINDINGS
David Zajac, Daniela Vivaldi, Amelia Drake, John van Aalst, Taylor Warren, Marziye Eshghi, Maureen Feldbaum

8:50 AM
DISCUSSION

SESSION B: SPEECH LANGUAGE-PATHOLOGY
8:00 AM-9:00 AM
Room: Celebrity E

Goal: To present velopharyngeal insufficiency issues impacting people affected by cleft and craniofacial conditions.
Objective: Learners will be able to explain three aspects of velopharyngeal insufficiency issues impacting people affected by cleft and craniofacial conditions.

Session Chair: David Zajac, PhD
Session Co-Chair: Amy Morgan, MA

8:00 AM
81 LONGITUDINAL ANALYSIS OF HYPERNASALITY IN SCHOOL-AGED CHILDREN WITH REPAIRED CLEFT PALATE
David Zajac, John Preisser, Amelia Drake, Marziye Eshghi, Jamie McGee, Daniela Vivaldi, Maureen Feldbaum

8:10 AM
82 IMPACT OF ACHIEVING VELOPHARYNGEAL SUFFICIENCY EARLY IN MAXIMIZING CHILDREN’S ARTICULATION PERFORMANCE
Amy Morgan, Claudia Crilly Bellucci, Brent Collett, Arthur Curtis, Mary O’Gara, Pravin Patel, Mitchell Grasseschi, David Morris, Kathleen Kapp-Simon

8:20 AM
*83 PREDICTORS OF HYPERNASAL SPEECH IN CHILDREN WITH 22Q11.2 DELETION SYNDROME
Adriane Baylis, David Zajac, Caitlin Cummings, Gregory Pearson, Richard Kirschner

8:30 AM
84 PRE AND POST-PUBERTAL CHANGES: THE EFFECT OF GROWTH ON THE VELOPHARYNGEAL ANATOMY
Jamie Perry, Lakshmi Kollara, Graham Schenck, Xiangming Fang, David Kuehn, Bradley Sutton

8:40 AM
DISCUSSION

SESSION C: ASCFS LINTON A. WHITAKER LECTURE
8:00 AM-9:00 AM
Room: Celebrity D

Session Chair: Jeffrey Fearon, MD

The American Society of Craniofacial Surgery Foundation is pleased to present the third Linton A. Whitaker Lecture. The Lecture recognizes Dr. Whitaker’s years of service to the specialty of craniofacial surgery and his mentorship and education of a generation of plastic surgeons.

CRANIOSYNOSTOSIS
Dr. Fearon will review the etiology, functional implications, historical and current treatments of craniosynostosis. He will also address the outcomes of treatment.
Jeffrey Fearon, MD

9:00 AM-10:00 AM
ACPA ANNUAL BUSINESS MEETING
(open only to ACPA members)
Room: Celebrity D-E

10:00 AM-10:30 AM
POSTER SESSION D, EXHIBITS, COFFEE BREAK

CONCURRENT SPECIALTY SESSIONS (1-5)
10:30 AM-12:00 PM

CONCURRENT 1: ASCFS PART I
Room: Celebrity D

Goal: To provide those who treat craniofacial conditions surgically with a forum to discuss new concepts and share information.
Objective: Each learner will be able to interpret three new surgical management techniques which can be used for a variety of craniofacial conditions.

Session Chair: Jack Yu, MD, DMD
Session Co-Chair: Jesse Taylor, MD
FRIDAY, April 24, 2015
Concurrent Sessions

10:30 AM
86 OUTCOMES ANALYSIS OF SURGICAL AND NON-SURGICAL INTERVENTION FOR NEONATES WITH PIERRE ROBIN SEQUENCE
Christopher Runyan, Christopher Gordon, Brian Pan, Shahryar Tork

10:40 AM
87 PREDICTING FAILURE OF MANDIBULAR DISTRACTION OSTEOGENESIS FOR INFANTS WITH ROBIN SEQUENCE: A BI-INSTITUTIONAL STUDY
Melinda Costa, Sunil Tholpady, Mark Urata, Jeffrey Hammoudeh, Rachel Sargent, Ellynore Florendo, Luke Sanborn, Roberto Flores

10:50 AM
88 LONGITUDINAL STUDY OF MIDFACIAL ADVANCEMENT IN EARLY INFANCY FOR RELIEF OF SYNDROMIC CRANIOSYNOSTOSIS-ASSOCIATED AIRWAY OBSTRUCTION. AN 8 YEAR FOLLOW UP
Christian Albert El Amm, Aaron Morgan, Thomas Howard, Omar Beidas

11:00 AM
89 EN BLOC SUBCRANIAL ROTATION DISTRACTION ADVANCEMENT FOR THE TREATMENT OF SEVERE OBSTRUCTIVE SLEEP APNEA IN YOUNG SYNDROMIC CHILDREN
Richard Hopper, Christina Tragos, Hitesh Kapadia

11:10 AM
90 DISCUSSION

11:20 AM
91 VOLUMETRIC CHANGES IN CRANIAL VAULT EXPANSION: COMPARISON OF FRONTO-ORBITAL ADVANCEMENT AND POSTERIOR CRANIAL VAULT DISTRACTION OSTEOGENESIS
Christopher Derderian, Jason Wink, Amy Collinsworth, Jennifer McGrath, Scott Bartlett, Jesse Taylor

11:30 AM
92 NEW-ONSET CRANIOSYNOSTOSIS FOLLOWING POSTERIOR VAULT DISTRACTION OSTEOGENESIS
Fares Samra, Youssef Tahiri, James Paliga, Valeriy Shubinets, Jordan Swanson, Scott Bartlett, Jesse Taylor

11:40 AM
93 TIMING OF CLOSURE OF THE ANTERIOR SKULL BASE IN SYNDROMIC INFANTS: IMPLICATIONS FOR EARLY MONOBLOC
Richard Hopper, Christina Tragos, Yifan Guo

11:50 AM
94 DISCUSSION

12:00 PM-1:30 PM
95 LUNCH BREAK (on your own)

ASCFS LUNCHEON/BUSINESS MEETING
(separate registration fee required)
(open only to members of the American Society of Craniofacial Surgery)
Room: Rancho

12:00 PM-3:00 PM
96 ACPA SECOND EXECUTIVE COUNCIL MEETING
Room: Polo

CONCURRENT 2: CLEFT LIP AND PALATE SURGERY 1
Room: Celebrity E

Goal: To provide those who treat cleft lip and palate surgically with a forum to discuss new concepts and share information.

Objective: Each learner will be able to interpret three new surgical management techniques which can be used for cleft lip and palate.

Session Chair: Alex Kane, MD
Session Co-Chair: Oksana Jackson, MD

10:30 AM
97 SUPRA-BROW APPROACH FOR NEUROSURGICAL ACCESS TO ANTERIOR CRANIAL FOSSA AND ETHMOID SINUS: TECHNIQUE, EXPOSURE, AND CONSIDERATIONS
Raj Vyas, Michael Alperovich, David Staffenberg

10:40 AM
98 A COMPARATIVE STUDY OF 3D NASAL SHAPE IN UNILATERAL CLEFT LIP AND PALATE NOSES FOLLOWING ROTATION-ADVANCEMENT AND NAM-CUTTING PRIMARY NASAL REPAIR
Banafsheh Hosseinian, Asma Almaidhan, Pradip Sheteye, Court Cutting, Barry Grayson

10:50 AM
99 THE DEVELOPMENT OF A NEW SCORING SYSTEM FOR THE ASSESSMENT OF NASOLABIAL APPEARANCE IN PATIENTS WITH NON-SYNDROMIC CLEFT LIP AND PALATE
David Mosmuller, Lisette Mennes, Charlotte Prahl, Melissa Disse, Gem Kramer, Frank Niessen, Peter Don Griot

11:00 AM
100 INITIAL SEVERITY IN PATIENTS WITH CUCLP TREATED BY NAM AND TWO-STAGE SURGERY DOES NOT PREDICT NASOLABIAL AESTHETICS DURING PREADOLESCENCE
Supakit Peanchitkajorn, Saran Worasakwutiphong, Karen Yokoo, Robert Menard

11:10 AM
101 DISCUSSION
11:20 AM
PALATAL MEASUREMENTS PRE- AND POST-MODIFIED FURLOW REPAIR: ANALYSIS OF PALATAL LENGTHENING AND COMPARISON WITHIN CLEFT TYPES
Anthony Taglienti, Oresta Borodevyc, Takiyah Mitchell, David Low, Jesse Taylor, Oksana Jackson

11:30 AM
THE EFFECT OF FOUR DIFFERENT TREATMENT PROTOCOLS ON CRANIO-MAXILLO-FACIAL GROWTH IN PATIENTS WITH UNILATERAL COMPLETE CLEFT LIP, PALATE AND ALVEOLAR
Xue Xu, Bing Shi, Qian Zheng

11:40 AM
THE USE AND LIMITATIONS OF INTERCENTER OUTCOMES COMPARISONS PROTOCOLS FOR INTERNAL AUDITS AND QUALITY IMPROVEMENT
Patricia Glick, Stephen Beals, Gunvor Semb, Ross Long, Jr, Kathleen Russell, Ronald Reed, Hathaway, John Daskalogiannakis, Andrea Smith, Thomas Sitzman, William Shaw

11:50 AM DISCUSSION

12:00 PM-1:30 PM
LUNCH BREAK (ON YOUR OWN)

12:00PM
ACPA SECOND EXECUTIVE COUNCIL MEETING
Room: Polo

CONCURRENT 3: SPEECH
Room: Oasis 1-4

Goal: To provide those who treat speech and hearing aspects of people with cleft lip/palate and other craniofacial conditions with a forum to discuss new concepts and share information.

Objective: Each learner will be able to interpret three new findings or management techniques.

Session Chair: Michael VanLue, PhD, CCC-SLP
Session Co-Chair: Adriane Baylis, PhD, CCC-SLP

10:30 AM
THE RELATIONSHIP BETWEEN ARTICULATION PERFORMANCE AND EARLY DECODING SKILLS FOR CHILDREN WITH OROFACIAL CLEFTS
Claudia Crilly Bellucci, Amy Morgan, Brent Collett, Arthur Curtis, Pravin Patel, Jody Coppersmith, Mary O’Gara, Kathleen Kapp-Simon

10:40 AM
FLOW RATE COMPARISON BETWEEN SPECIALIZED BOTTLES FOR CHILDREN WITH CLEFT PALATE, CURRENT STANDARD BOTTLES, AND A NEW BOTTLE FEEDING MECHANISM
Thanh Tran, Katrina Shah, Marcelle Huizenga, Catherine Pelland, Katherine R. Knaus, Kathleen Borowitz, Silvia Blemker

10:50 AM
PREVALENCE OF HEARING LOSS IN CHILDREN WITH CLEFT AND EFFECT OF DIFFERENT AUDIOLOGICAL GUIDELINES ON THE EPIDEMIOLOGY
Asmat Din, Anand Muddaiah, Craig Napier, Mark Devlin, Arup Ray, Hafiz Sadiq, Craig Russell, David Wynne

11:00 AM
SUBMUCOUS CLEFT PALATE: A SINGLE SURGEON RETROSPECTIVE STUDY EVALUATING THE EFFICACY OF SELECTIVE USE OF VIDEO-FLOUROSCOPY TO IMPROVE DIAGNOSIS IN DIFFICULT CASES
Zoe MacIsaac, Matthew Ford, Lorelei Grunwaldt

11:10 AM DISCUSSION

11:20 AM
HOW DOES DYNAMIC MRI COMPARE TO NASENDOSCOPY FOR THE STUDY OF VELOPHARYNGEAL FUNCTION?
Jamie Perry, Graham Schenck, Lakshmi Kollara, Kazlin Mason, David Kuehn, Bradley Sutton

11:30 AM
EXTRAVELAR AND INTRAVELAR MORPHOLOGY OF THE LEVATOR VELI PALATINI: IMPLICATIONS FOR CLEFT PALATE SPEECH
Lakshmi Kollara, Jamie Perry

11:40 AM
THE IMPACT OF OROFACIAL MYOFUNCTIONAL THERAPY ON THE REESTABLISHMENT OF NASAL BREATHING AND THE STABILITY OF ORTHODONTIC TREATMENT. TONGUE THRUST: TO TREAT OR NOT TO TREAT?
Alla Sorokin, Natasha Cassir, Eve Desplats, Nelly Huynh

11:50 AM DISCUSSION

12:00 PM-1:30 PM
LUNCH BREAK (ON YOUR OWN)

12:00PM
ACPA SECOND EXECUTIVE COUNCIL MEETING
Room: Polo
CONCURRENT 4: ORTHO/DENTAL
Room: Celebrity F-H

Goal: To provide those who treat orthodontic/dental aspects of people with cleft lip/palate and other craniofacial conditions with a forum to discuss new concepts and share information.

Objective: Each learner will be able to interpret three new findings or management techniques.

Session Chair: Ana Mercado, DMD, PhD
Session Co-Chair: Lindsay Schuster, DMD, MS

10:30 AM

COMPARISON OF CUCLP NASOLABIAL APPEARANCE BETWEEN 4 CENTERS WITH INFANT MANAGEMENT PROTOCOLS +/- USE OF NAM, GPP, OR INFANT ORTHOPEDICS
Patricia Glick, Stephen Beals, Thomas Sitzman, Gunvor Semb, John DaskalCouldakis, Ronald Reed Hathaway, Kathleen Russell, Ross Long, Jr, Jennifer Fessler, Cristina Muller

10:40 AM

DYNAMIC CLEFT INFANT MAXILLARY ORTHOPEDICS AND PERIOSTEoplastY: A 25 YEAR STUDY
Frederick Lukash, Michael Schwartz, Jessica Korsh, Katelin O’Brien, Kristen Aliano

10:50 AM

GENERATING EVIDENCE IN CLEFT CARE: A DELPHI-LIKE STUDY TO IDENTIFY AND ADDRESS BARRIERS TO CARRYING OUT RANDOMIZED CONTROLLED TRIALS
Karen Wong, Christopher Forrest, Holger Schunemann

11:00 AM

ORTHODONTIC MANAGEMENT OF ANTERIOR MAXILLARY DistrAction IN CLEFT MAXILLA
Siddhartha Raghat, Sehza Fathima, Akhter Hussain

11:10 AM

DISCUSSION

11:20 AM

DEVELOPMENT OF THE FIRST PERMANENT MANDIBULAR MOLAR IN YOUNG CHILDREN WITH UNILATERAL COMPLETE CLEFT LIP AND PALATE (UCCLP)
Nuno V. Hermann, Sven Kreiborg, Tron A. Darvann

11:30 AM

DENTAL MATURATION OF CHILDREN WITH UNILATERAL CLEFT LIP AND PALATE
Elaine Tan, Mimi Yow, Meaw Charm Kuek, Hung Chew Wong

11:40 AM

POOLED ANALYSIS OF ORTHODONTIC OUTCOMES AFTER ALVEOLAR BONE GRAFTING – A SYSTEMATIC REVIEW
Hannah Polus, Thomas Gildea, Alexander Lin

11:50 AM

DISCUSSION

12:00 PM-1:30 PM

LUNCH BREAK (ON YOUR OWN)

12:00PM

ACPA SECOND EXECUTIVE COUNCIL MEETING
Room: Polo

CONCURRENT 5: BASIC RESEARCH
Room: Celebrity A-C

Goal: To provide researchers and clinicians with a forum to discuss new concepts and share research findings related to the management of cleft and craniofacial defects.

Objective: Each learner will be able to interpret three new research findings related to the management of cleft and craniofacial defects.

Session Chair: Mark Mooney, PhD
Session Co-Chair: Hyun-Duck Nah, DMD, MSD, PhD

10:30 AM

THE DEVELOPMENT OF AN OSTEO-ENRICHED HYBRID SCAFFOLD SEEDED WITH HBMP2 AND MDCS TO AUGMENT THE HEALING OF CRANIAL DEFECTS
Denver Lough, Christopher Madsen, Edward Swanson, Devin Miller, Anand Kumar

10:40 AM

PATIENT SPECIFIC BILAMINAR RESORBABLE MESH WITH BMP-2 PROMOTES CRANIAL VAULT HEALING IN CHILDREN
David Hindin, Wellington Davis, Prithvi Narayan, Justine Lee, Xilin Jing, James Bradley

10:50 AM

BIOPATTERNED RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 DOES NOT INDUCE PANSYNOSTOSIS OR GROWTH RESTRICTION IN THE IMMATURE CRANIOFACIAL SKELETON
Sameer Shakir, Osama Basri, James Cray, Sanjay Naran, Darren Smith, Zoe MacIsaac, Seth Weinberg, Mark Mooney, Joseph Losee, Greg Cooper

11:00 AM

THE ROLE OF TGF-ALPHA IN THE WOUND HEALING CAPACITY OF CELLS DERIVED FROM HUMANS WITH CLEFT LIP/APALATE
Joël Beyeler, Isabelle Schnyder, Christos Katsaros, Matthias Chiquet
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:10 AM</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>11:20 AM</td>
<td>THE OPTIMAL RHBMP2 DOSE NECESSARY TO AUGMENT HEALING OF A MURINE CRANIAL DEFECT UTILIZING A NOVEL FIBRIN HYDROGEL SCAFFOLD
Christopher Madsen, Denver Lough, Edward Swanson, Anne Tong Jia Wei, Devin Miller, Anand Kumar</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>OPTIMIZING COLLAGEN SCAFFOLDS FOR BONE ENGINEERING: EFFECTS OF CROSSLINKING AND MINERAL CONTENT ON STRUCTURAL CONTRACTION AND OSTEOGENESIS
Deborah Martins, Xiaoyan Ren, David Bischoff, Daniel Weisgerber, Dean Yamaguchi, Timothy Miller, Brendan Harley, Justine Lee</td>
</tr>
<tr>
<td>11:40 AM</td>
<td>EVALUATION OF ADIPOSE-DERIVED STEM CELL OSTEOGENIC POTENTIAL AND CRANIAL BONE REMODELING IN A MURINE MODEL OF CROUZON SYNDROME
Cheryl Gomillion, Andre Alcon, Andrew Le, Derek Steinbacher</td>
</tr>
<tr>
<td>11:50 AM</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>12:00 PM-1:30 PM</td>
<td>LUNCH BREAK (ON YOUR OWN)</td>
</tr>
<tr>
<td>12:00PM</td>
<td>ACPA SECOND EXECUTIVE COUNCIL MEETING
Room: Polo</td>
</tr>
</tbody>
</table>

CONCURRENT SPECIALTY SESSIONS (6-10)

1:30 PM-3:00 PM

CONCURRENT 6: ASCFS 2
Room: Celebrity D

Goal: To provide a forum focused on research and surgical management of individuals with craniofacial anomalies.

Objective: Each learner will be able to explain three new research findings or surgical management techniques for craniofacial conditions.

Session Chair: Richard Hopper, MD
Session Co-Chair: Jesse Goldstein, MD

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:40 AM</td>
<td>A PRELIMINARY REPORT ON THE USE OF POST-OPERATIVE STANDARDIZED OUTCOME TRACKING FOR INFANTS WITH SINGLE SUTURE CRANIOSYNOSTOSIS
Craig Birgfeld, Amy Lee, Michael Collins, Richard Hopper, Charles Haberkern, Joseph Gruss, Richard Ellenbogen, Timothy Grieb, Carrie Heike</td>
</tr>
<tr>
<td>1:50 AM</td>
<td>EVALUATION OF DIRECT SURGICAL REMODELING OF FRONTAL BOSSING IN PATIENTS WITH SAGITTAL SYNOSTOSIS
Debra Yen, Gary Skolnick, Dennis Nguyen, Sybill Naidoo, Kamlesh Patel, Matthew Smyth, Alex Kane, Albert Woo</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>IMPLEMENTATION OF TRANEXAMIC ACID TO REDUCE BLOOD LOSS DURING CRANIAL VAULT REMODELING FOR CRANIOSYNOSTOSIS AT A SINGLE INSTITUTION
David Martin, Brian Diggs, Heike Gries, Jeffrey Koh, Martin Schreiber, Nathan Selden, Anna Kua</td>
</tr>
<tr>
<td>2:10 PM</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>2:20 PM</td>
<td>IMPLEMENTATION OF TRANEXAMIC ACID TO REDUCE BLOOD LOSS DURING CRANIAL VAULT REMODELING FOR CRANIOSYNOSTOSIS AT A SINGLE INSTITUTION
David Martin, Brian Diggs, Heike Gries, Jeffrey Koh, Martin Schreiber, Nathan Selden, Anna Kua</td>
</tr>
<tr>
<td>2:30 PM</td>
<td>A TREATMENT PROTOCOL FOR ATYPICAL PRESENTING SAGITTAL CRANIOSYNOSTOSIS
Edward Ruane, Liliana Camison, Regina Fenton, Ian Pollack, Mandeep Tamber, Joseph Losee, Jesse Goldstein</td>
</tr>
<tr>
<td>2:40 PM</td>
<td>A NEW OSTEOGENIC AGENT, OXYSTEROL, INDUCES BONE REPAIR IN RABBIT CRANIOFACIAL DEFECT
Reza Jarrahy, Andrew Li, Situo Zhou, Akishige Hokugo, Andres Segovia, Kameron Rezzadeh</td>
</tr>
<tr>
<td>2:50 PM</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>POSTER SESSION E, EXHIBITS, COFFEE BREAK</td>
</tr>
</tbody>
</table>

CONCURRENT 7: CLEFT LIP/PALATE SURGERY 2
Room: Celebrity E

Goal: To provide a forum focused on patient outcomes following surgical management of individuals with cleft palate, including outcomes related to obstructive sleep apnea.
Objective: Each learner will be able to explain three findings related to patient outcomes following surgical management of individuals with cleft palate, including outcomes related to obstructive sleep apnea.

Session Chair: John Jensen, MD
Session Co-Chair: Alexander Lin, MD

1:30 PM
THE EFFECT OF CLEFT PALATE AND REPAIR ON GROWTH: A COMPARISON OF AMERICAN CHILDREN AND INTERNATIONAL ADOPTEES
Sandra Tomlinson-Hansen, Brianne Mitchell, Patrick Gerety, Rami Sherif, Jordan Swanson, Jesse Taylor

1:40 PM
PERIOPERATIVE COMPLICATIONS IN POSTERIOR PHARYNGEAL FLAP SURGERY: REVIEW OF THE NATIONAL SURGICAL QUALITY IMPROVEMENT PROGRAM PEDIATRIC (NSQIP-PEDS) DATABASE
Jordan Swanson, James Johnston, Kaitlyn Paine, Jesse Taylor

1:50 PM
ACELLULAR DERMAL MATRIX IN PRIMARY PALATOPLASTY: IMPLICATIONS FOR SPEECH
Darren Smith, Sanjay Naran, Sameer Shakir, Liliana Camison, Rick Mai, Jesse Goldstein, Joseph Losee

2:00 PM
VARIATION IN THE BURDEN OF SECONDARY PALATE SURGERY ACROSS US CLEFT CENTERS
Thomas Sitzman, Monir Hossain, Maria Britto

2:10 PM
DISCUSSION

2:20 PM
PATIENTS WITH CLEFTS WHO UNDERGO SLEEP STUDIES AFTER SURGERY DO NOT SHOW SIGNIFICANTLY IMPROVED SLEEP PARAMETERS AFTER ADENOTONSILLECTOMY
Justine McGauley, Jeremy Goss, Eric Adjei Boakye, Margie Hunter, Paula Buchanan, Alexander Lin, Shalini Paruthi

2:30 PM
SLEEP DISORDERED BREATHING IN PATIENTS WITH CLEFT PALATE: DO HOME OXIMETRY SLEEP STUDIES HAVE A CLINICAL UTILITY?
Asmat Din, Jennifer Pettigrew, Justice Reilly, Anne Crawford, Shirley Wallace, Neil Gibson, Arup Ray, Mark Devlin, David Wynne, Craig Russell

2:40 PM
INCIDENCE AND SEVERITY OF OBSTRUCTIVE SLEEP APNEA IN ONE THOUSAND TWENTY CHILDREN WITH CLEFT-CRANIOFACIAL CONDITIONS
Justine McGauley, Jeremy Goss, Eric Adjei Boakye, Margie Hunter, Paula Buchanan, Shalini Paruthi, Alexander Lin

2:50 PM
DISCUSSION

3:00 PM
POSTER SESSION E, EXHIBITS, COFFEE BREAK

CONCURRENT 8: ADVANCES IN BIOIMAGING
Room: Oasis 1-4

Goal: To provide a forum to present various aspects of advances in bioimaging.
Objective: Each learner will be able to discuss three aspects related to the advances in bioimaging.

Session Chair: Luiz Pimenta, DDS, MS, PhD
Session Co-Chair: Silvia Blemker, PhD

1:30 PM
DEVELOPMENT AND VALIDATION OF COMPUTER-BASED 3D ANALYSIS OF SYMMETRY BEFORE AND AFTER CLEFT LIP REPAIR
Raymond Tse, Jia Wu, Carrie Heike, Craig Birgfeld, Kelly Evans, Murat Maga, Morrison Clinton, Linda Shapiro

1:40 PM
DEFINING NORMAL: QUANTIFYING CRANIAL ASYMMETRY IN THE PEDIATRIC POPULATION
Rami Hallac, Min-Jeong Cho, Jananie Ramesh, James Seaward, Nuno V. Herrmann, Tron A. Darvann, Alex Kane

1:50 PM
CONTRIBUTIONS OF THE MUSCULUS UVULAE TO VELOPHARYNGEAL CLOSURE QUANTIFIED WITH A 3D MULTI-MUSCLE COMPUTATIONAL MODEL
Joshua Inouye, Jamie Perry, Kant Lin, Silvia Blemker

2:00 PM
DIAGNOSTIC YIELD OF SKULL RADIOGRAPHS IN DIFFERENTIATING SYNOSTOTIC AND NON-SYNOSTOTIC PLAGIOCEPHALY
Min-Jeong Cho, Loa Borchert, Alex Kane

2:10 PM
DISCUSSION

2:20 PM
PRENATAL DIAGNOSIS OF CRANIOSYNOSTOSIS
Christopher DeFreitas, Stephen Carr, Derek Merck, Margaret Byrne, Olivia Linden, Stephen Sullivan, Helena Taylor

2:30 PM
THE ROLE OF PREOPERATIVE IMAGING IN THE OPERATIVE PLANNING AND DETECTION OF INTRACRANIAL ABNORMALITIES IN SINGLE SUTURE LAMBDOID CRANIOSYNOSTOSIS
Asra Hashmi, Kavitha Ranganathan, Antonio Rampazzo, Karin Murazsko, Christian Vercier, Jennifer Strahle, Steven Buchman
2:40 PM
OPTICAL COHERENCE TOMOGRAPHY: AN OBJECTIVE MODALITY FOR DETECTING PAPILLEDEMA IN CRANIOSYNOSTOSIS PATIENTS WITH SUSPECTED INTRACRANIAL HYPERTENSION
Jordan Swanson, Lloyd Bender, Brianne Mitchell, Greg Heuer, William Katowitz, Jesse Taylor

2:50 PM
DISCUSSION

3:00 PM
POSTER SESSION E, EXHIBITS, COFFEE BREAK

CONCURRENT 9: PSYCHOSOCIAL
Room: Celebrity F-H

Goal: To provide a forum focused on psychosocial issues and outcomes related to individuals affected by cleft and craniofacial conditions.

Objective: Each learner will be able to express four psychosocial issues and outcomes related to individuals affected by cleft and craniofacial conditions.

Session Chair: Margot Stein, PhD
Session Co-Chair: Patricia Severns, MA

1:30 PM
RELATIONSHIP BETWEEN RECEPITIVE LANGUAGE AND TEACHER AND PARENT REPORTS OF ATTENTION PROBLEMS IN CHILDREN WITH OROFACIAL CLEFTS
Jody Coppersmith, Amy Morgan, Brent Collett, Claudia Crilly Bellucci, Arthur Curtis, Kathleen Kapp-Simon

1:40 PM
INTERNATIONALLY ADOPTED CHILDREN WITH CLEFT LIP AND PALATE: IMPLICATIONS FOR SOCIAL WORK
Farah Sheikh, Emily Ho, Sally Hynes, David M Fisher, Christopher Forrest

1:50 PM
EXAMINING SOCIAL AND COMMUNICATIVE FUNCTIONING IN CHILDREN WITH VELOPHARYNGEAL INSUFFICIENCY
Agnieszka Dzioba, Elizabeth Skarakis-Doyle, Philip Doyle, Murad Husein, Anne Dworschak-Stokan

2:00 PM
BODY IMAGE, QUALITY OF LIFE, AND SOCIAL STIGMATIZATION IN ADOLESCENTS WITH AND WITHOUT CRANIOFACIAL CONDITIONS
Canice Crerand, Nichola Rumsey, Alexandra Clarke, Anne Kazak, David Sarwer

2:10 PM
DISCUSSION

CONCURRENT 10: GENETICS
Room: Celebrity A-C

Goal: To provide a forum to present new findings related to the genetics of individuals affected by cleft and craniofacial conditions.

Objective: Each learner will be able to discuss three new findings related to the genetics of individuals affected by cleft and craniofacial conditions.

Session Chair: Howard Saal, MD
Session Co-Chair: Donna McDonald-McGinn, MS, LCGC, MS, LCGC

1:30 PM
ROBIN SEQUENCE WITHOUT CLEFT PALATE: GENETIC DIAGNOSES AND MANAGEMENT IMPLICATIONS
Howard Saal, Robert Hopkin, Patricia Bender, Kathryn Nicole Weaver

1:40 PM
22Q11.2 Deletion Syndrome: Objective Assessment of a Newly Identified Facial Phenotype
Kelly Mabry, Charles Castiglione, Kerri Langevin

1:50 PM
THE PERPLEXING PREVALENCE OF FAMILIAL NESTED 22Q11.2 DELETIONS
Donna McDonald-McGinn, Meg Maguire, Patricia Schultz, Cynthia B. Solot, Lauren Dicaireno, Megan McNamara, Daniel McGinn, Beverly Emanuel, Elaine Zackai, Oksana Jackson
Concurrent Sessions

Concurrent Specialty Sessions (11-15)

CONCURRENT 11 — MANDIBLE MICROsomia
Room: Celebrity D

Goal: To provide a forum to present new findings related to the etiology and management of mandibular microsomia.

Objective: Each learner will be able to discuss three new findings related to the etiology and management of mandibular microsomia.

- **Session Chair:** Mark Urata, DDS, MD
- **Session Co-Chair:** Davinder Singh, MD

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30 PM</td>
<td>CLARIFYING THE RELATIONSHIP BETWEEN THE DIFFERENT FEATURES OF THE OMENS+ CLASSIFICATION IN CRANIOFACIAL MICROsomia</td>
<td>Jorien Tuin, Youssef Tahiri, Kaitlyn Paine, James Paliga, Jesse Taylor, Scott Bartlett</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:40 PM</td>
<td>SURGICAL INTERVENTION IN CRANIOFACIAL MICROsomia: THE EXPERIENCE OF 4 CRANIOFACIAL CENTERS WITHIN THE FACIAL NETWORK</td>
<td>Dale Podolsky, David Fisher, Karen Wong, Thomas Looi, James Drake, Christopher Forrest</td>
</tr>
</tbody>
</table>

CONCURRENT 12 — CLEFT LIP/PALATE SURGERY 3
Room: Celebrity E

Goal: To provide a forum focused on new findings related to evaluation, surgical treatment and outcomes of individuals affected by cleft and craniofacial conditions.

Objective: Each learner will be able to discuss four new findings related to evaluation, surgical treatment and outcomes of individuals affected by cleft and craniofacial conditions.

- **Session Chair:** Lisa David, MD
- **Session Co-Chair:** Michael Friel, MD

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30 PM</td>
<td>DEVELOPMENT OF A ROBOTIC APPROACH TO CLEFT PALATE REPAIR. PHASE 1: CREATION AND VALIDATION OF A CLEFT PALATE SIMULATOR</td>
<td>Dale Podolsky, David Fisher, Karen Wong, Thomas Looi, James Drake, Christopher Forrest</td>
</tr>
</tbody>
</table>
FRIDAY, April 24, 2015
Concurrent Sessions

3:40 PM A CRANIOMETRIC ANALYSIS OF BILATERAL ENDOSCOPIC SUTURECTOMY AND HELMET THERAPY FOR MANAGEMENT OF BILATERAL CORONAL CRANIOSYNOSTOSIS
S. Alex Rottgers, Hasan Syed, Yasser Jeelani, Edward Yang, Subhash Lohani, John Meara, Mark Proctor

3:50 PM COMPARISON OF CRANIAL ANTHROPOMETRIC MEASUREMENTS USING HAND CALIPER VERSUS LASER SCANNER TO DIAGNOSE SEVERITY AND ASSESS CHANGE IN PATIENTS WITH DEFORMATIONAL PLAGIOCEPHALY
Regina Fenton, Wei-Wei Lee, Lorelei Grunwaldt

4:00 PM SLIDING TEMPORALIS MYOPLASTY FOR SINGLE STAGE SMILE RECONSTRUCTION IN 15 CONSECUTIVE PATIENTS WITH FACIAL PARALYSIS
Andre Panossian

4:10 PM DISCUSSION

4:20 PM DISCUSSION

4:30 PM TREATMENT CENTER FACTORS ASSOCIATED WITH SECONDARY PALATE SURGERY
Thomas Sitzman, Monir Hassain, Maria Britto

4:40 PM A COMPARISON OF THE NEED FOR SPEECH THERAPY FOLLOWING TWO PALATAL REPAIR TECHNIQUES
Debra Yen, Dennis Nguyen, Gary Skolnick, Sybill Naidoo, Kamlesh Patel, Lynn Grames, Albert Woo

4:50 PM DISCUSSION

CONCURRENT 13 — SPEECH SURGERY
Room: Oasis 1-4

Goal: To provide a forum to present new findings related to the evaluation of velopharyngeal dysfunction and outcomes related to speech surgery in individuals with cleft palate or 22Q11.2 deletion syndrome.

Objective: Each learner will be able to discuss three new findings related to the evaluation of velopharyngeal dysfunction and outcomes related to speech surgery in individuals with cleft palate or 22Q11.2 deletion syndrome.

Session Chair: Jamie Perry, PhD, CCC-SLP
Session Co-Chair: Lynn Fox, MA, MEd
CONCURRENT 14 — HOSPITAL MANAGEMENT
Room: Celebrity F-H

Goal: To provide a forum to present new findings related to the hospital management of individuals affected by cleft and craniofacial conditions.

Objective: Each learner will be able to discuss three new findings related to the hospital management of individuals affected by cleft and craniofacial conditions.

Session Chair: Judy Marciel, MSN, RN, PCNS, CPNP, APN
Session Co-Chair: Michael Nelson, MD

3:30 PM
POST-PALATOPLASTY PAIN PROTOCOL: A PILOT STUDY
Allison Nauta, Lisa Piper, Heike Gries, Kenneth Azarow, Jeffrey Koh, Anna Kuang

3:40 PM
RECOVERY TIME AND COMPLICATIONS AFTER Iliac Crest Bone Graft Harvest for Alveolar Cleft Bone Grafting
Erika Henkelman, Emily Liu, Damir Matic

3:50 PM
PATIENT PERCEPTIONS OF PERIOPERATIVE CARE FOLLOWING Iliac Bone Grafting Surgery: A Survey Based Study of Patients Treated in a Large Academic Medical Center
Bianca Chin, Anthony Wilson, Anthony Taglienti, Takiyah Mitchell, Oresta Borodevyc, Charlene Deuber, Christine Stevenson, Taylor Shikitino, Oksana Jackson

4:00 PM
EARLY SURGICAL COMPLICATIONS AFTER PRIMARY LIP REPAIR: A REPORT OF 3108 CONSECUTIVE PATIENTS
Björn Schönmeyr, Lisa Wendby, Alex Campbell

4:10 PM
DISCUSSION

4:20 PM
CLEF PALATE REPAIR: HOSPITAL LENGTH OF STAY
Alison Kaye, Annie Crumbaker

4:30 PM
FACTORS AFFECTING DURATION OF ADMISSION AFTER PRIMARY PALATOPLASTY
Peter Olaitan, Stephen Pateet, Gregory Pearson, Adrianne Baylis, Richard Kirschner

4:40 PM
IMPROVING CONSISTENCY OF CARE AND TIMELY DISCHARGE FOR PATIENTS UNDERGOING CLEFT REPAIR OR ILIAC BONE GRAFTING
Charlene Deuber, Oksana Jackson, Christine Stevens

4:50 PM
DISCUSSION

CONCURRENT 15 — OUTCOMES AND INTERNATIONAL ISSUES
Room: Celebrity A-C

Goal: To provide a forum to present new findings related to international issues and surgical outcomes of individuals affected by cleft and craniofacial conditions.

Objective: Each learner will be able to discuss three new findings related to international issues and surgical outcomes of individuals affected by cleft and craniofacial conditions.

Session Chair: Iris Sageser, RDH, MS
Session Co-Chair: Laura Monson, MD

3:30 PM
SCALABLE, SUSTAINABLE COST-EFFECTIVE SURGICAL CARE: A MODEL FOR SAFETY AND QUALITY IN THE DEVELOPING WORLD
Alex Campbell, Carolina Restrepo, Donald R. Mackay, Randy Sherman, Ajit Varma, Ruben Ayala, Hiteswar Sarma, Gaurav Deshpande, William Magee

3:40 PM
GLOBAL ONLINE TRAINING FOR CLEFT CARE – ANALYSIS OF INTERNATIONAL UTILIZATION
Derek Culnan, Aaron Oliker, Court Cutting, Roberto Flores

3:50 PM
EVALUATION OF SURGICAL OUTCOMES IN CRANIOSYNOSTOSIS RECONSTRUCTION WITH A NOVEL OBJECTIVE AUTOMATIC COMPUTATIONAL FRAMEWORK
Mark Lloyd, Edward Buchanan, Ron Goldman, Binhang Yuan, Laura Monson, David Khechoyan

4:00 PM
IMPROVED CLEFT LIP OUTCOMES AT A SURGERY SPECIALTY CENTER IN THE DEVELOPING WORLD
Carolina Restrepo, Alex Campbell, Björn Schönmeyr, Gaurav Deshpande, Hiteswar Sarma

4:10 PM
DISCUSSION

4:20 PM
ANTIBIOTIC USE IN PRIMARY PALATOPLASTY: A SURVEY OF PRACTICE PATTERNS, ASSESSMENT OF EFFICACY, AND PROPOSED GUIDELINES FOR USE
S. Alex Rottgers, Liliana Camison, Rick Mai, Sameer Shakir, Lorelei Gruenwaldt, Andrew Nowalk, Megan Natali, Joseph Losee

4:30 PM
ROLE OF ANTIMICROBIALS IN CLEFT PALATE SURGERY: PROSPECTIVE, DOUBLE BLIND, RANDOMIZED, PLACEBO-CONTROLLED CLINICAL STUDY
Maria Aznar, Björn Schönmeyr, Gaston Echaniz, Lismore Nebeker, Lisa Wendby, Alex Campbell

4:50 PM
DISCUSSION
FRIDAY, April 24, 2015 and SATURDAY, April 25, 2015

Concurrent Sessions

4:40 PM

ADULT CLEFT LIP REPAIR UNDER LOCAL ANAESTHESIA: THE GHANA EXPERIENCE
 Solomon Obiri-Yeboah, Alexander Oti Acheampong, Samuel Anso, Peter Ray, John Grant, Peter Donkor

4:50 PM

DISCUSSION

6:30 PM - 10:30 PM

ACPA'S 72ND ANNUAL GALA
 A NIGHT AT THE OASIS
 Party under the palm trees at the Westin Mission Hills' Masters Plaza
 Supported in part by the KLS Martin Group

Wrap up a fabulous week in paradise and join us for an evening of great food, music, and dance!

SATURDAY, April 25, 2015

CONCURRENT GENERAL SESSIONS (D-F)
8:00 AM-10:00 AM

SESSION D: FIRST YEAR CARE PANEL
7:30 AM-8:30 AM
 Room: Celebrity A-C

Goal: To introduce new multidisciplinary cleft team members to key concepts related to the management of children with cleft lip and/or palate during their first year of life.

Objective: Each learner will be able to 1) describe the roles of various members of the multidisciplinary team, and 2) restate an outline and timeline of care that is appropriate during the first year of life.

Session Chair: Noreen Clarke, RN, MSN

AN INTRODUCTION TO THE CARE OF THE CHILD WITH A CLEFT: THE FIRST YEAR OF LIFE
A multidisciplinary panel will describe their roles in caring for children and families affected by clefting. We will introduce family centered care for the child diagnosed prenatally or neonatally, emphasizing the role of nursing and care coordination. ACPA Standards for Cleft Palate and Craniofacial Teams will be incorporated. Psychosocial issues and interventions will be discussed. Delivery of culturally competent care to diverse families and socioeconomic groups will be addressed.

Noreen Clarke, RN, MSN, Alexis Johns, PhD, Karla A. Haynes, RN, MPH, MS, CPNP, Daniela Schweitzer, MD, Lori Howell, MD, Yvonne R. Gutierrez, MD

SESSION E: CLEFT CARE IN THE DEVELOPING WORLD PANEL
8:30 AM-9:30 AM
 Room: Celebrity E

Goal: To develop an easy-to-use algorithm for international volunteer cleft trips to train local professionals and to ensure an exit strategy by developing a sustainable national cleft organization.

Objective: Each learner will be able to: 1) identify a place to perform international cleft care, 2) participate at this site in teaching cleft care, 3) identify local leaders to learn cleft care, 4) prepare local leaders to perform independent cleft care.

Session Chair: John van Aalst, MD

DEVELOPING ALGORITHMS FOR TRAINING AND INDEPENDENCE IN CLEFT CARE IN THE DEVELOPING WORLD: AN OASIS IN THE SAND
Over ten years we have performed 1,700 cleft surgeries in Government Hospitals in the Palestinian Territories. Our initial model employed teams from outside Palestine and has transitioned to a new model: in a recent surgical trip to Gaza all team members were Palestinians from the Territories. We demonstrate that teaching cleft care can be done safely with full reliance on local professionals and is a model for improving cleft care throughout the Middle East.

Chris Gordon, MD, Haithem M. Elhadi Babiker, Ann Schwentker, MD, John van Aalst, MD

SESSION F: ASCFS PANEL
7:30 AM-9:30 AM
 Room: Celebrity D

Goal: Panelists will review the current research and provide recommendations regarding the timing of surgical management of non-syndromic craniosynostosis, as well as alternative options.

Objective: Each learner will be able to analyze and compare the research and recommendations of early versus late surgery, as well as alternative treatment modalities, including early aggressive non-devascularizing surgery.

Session Chair: Joseph Losee, MD

TIMING OF THE SURGICAL MANAGEMENT OF NON-SYNDROMIC CRANIOSYNOSTOSIS
Panelists will review the current research and provide recommendations for early surgery, late surgery, alternative options, and will present the current evidence available. Invited discussants will summarize the presentations and ensure lively discussion with the audience.

Joseph Losee, MD, John Persing, MD, Jeffrey A. Fearon, MD, Jesse Taylor, MD, Jack Yu, MD, Richard Hopper, MD, Mark Urata, MD
There will be five poster sessions (sessions A through E) Two (2) sessions are scheduled per day except Thursday. On Wednesday, Poster Session A will run from 7:00 AM-1:00 PM, and Poster Session B will run from 1:30 PM-6:30 PM. On Thursday, Poster Session C will run from 7:00 AM-6:00 PM. And on Friday, Poster Session D will run from 8:00 AM-12:30 PM, and Poster Session E will run from 1:00 PM to 5:00 PM. The posters will be located in the Celebrity Patio (outdoor).

Please note the top numbers correspond to the posterboard position number.

Goal: To create a visual forum for the sharing of interdisciplinary research and treatments for patients with cleft and craniofacial conditions.

POSTER SESSION A
WEDNESDAY, APRIL 22
7:00 AM-1:00 PM

1. **191** COMPARISON OF MAXILLARY DEVELOPMENT IN PATIENTS WITH CLEFT TREATED BY NAM AND ONE-STAGE PALATAL REPAIR VERSUS NAM AND TWO-STAGE REPAIR
 Supakit Peanchitlertkajorn

2. **192** A STANDARDIZED PROTOCOL FOR DECREASING MORBIDITY IN PATIENTS WITH HIGH COMPLICATION RISKS REQUIRE MONOBLOC OR LE FORT III FACIAL ADVANCEMENT
 Devin Miller, Edward Swanson, Denver Lough, Christopher Madsen, Anand Kumar

3. **193** CORONAL SUTURE MORPHOLOGY AND SYNOSTOTIC PROGRESSION IN RABBITS WITH DELAYED-ONSET CRANIOSYNOSTOSIS
 Harman Deol, Allegro Wollenberg, Seth Weinberg, James Cray, Joseph Losee, Greg Cooper, Michael Siegel, Mark Mooney

4. **194** DEVELOPING PSYCHOSOCIAL INTERVENTIONS FOR YOUTH WITH CRANIOFACIAL CONDITIONS: AN ASSESSMENT OF ADOLESCENTS’ CONCERNS AND INTERESTS
 Canice Crerand, Alexandra Clarke, Anne Kazak, David Sarwer, Brian Misiti, Nichola Rumsey

5. **195** DEVELOPING YOUR OWN COLLABORATIVE CARE PROGRAM
 Lynn Garmes, Mary Stahl

6. **196** DOES TYPE OF CLEFT PALATE REPAIR INFLUENCE POSTOPERATIVE EUSTACHIAN TUBE DYSFUNCTION?
 Graham Grabowski, Wendy Mackey, Derek Steinbacher

7. **197** EXECUTIVE COGNITIVE STRATEGIES FOR CHILDREN WITH CLEFT LIP AND PALATE: A COMPARATIVE GENDER STUDY
 Marcia Regina Ferro, Mariana de Pereira, Maria de Lourdes Tabakim

8. **198** DEVELOPING CT IMAGING MEASURES TO GUIDE AIRWAY MANAGEMENT IN INFANTS AND YOUNG CHILDREN WITH ROBIN SEQUENCE
 Victoria Lee, Francisco Perez, Jonathan Perkins, Michele Shaffer, Hitesh Kapadia, Richard Hopper, Kelly Evans

9. **199** IMPROVING ACCESSIBILITY OF INFORMATION ON TREATMENT OF OROFACIAL CLEFTS FOR FAMILIES AND SCHOOL PROFESSIONALS
 Michael VanLue, Margot Neufeld, Cynthia Cassell

10. **200** MANAGEMENT OF CRANIOSYNOSTOSIS AT AN ADVANCED AGE: CLINICAL FINDINGS, SURGICAL TREATMENT, AND CONTROVERSIES
 Rajiv Iyengar, Jerrold Boxerman, Petra Klinge, Stephen Sullivan, Helena Taylor

11. **201** ECTOPIC THYMUS MASQUERADING AS A MALIGNANCY IN A PATIENT WITH VOCAL CORD PARALYSIS AND 22Q11.2 DELETION SYNDROME: A CASE REPORT
 Phillip Chaffin Jr, Jonathan Grischkan

12. **202** PARAVERTERbral NERVE BLOCK IMPROVES OUTCOME IN PATIENTS WITH CLEFT UNDERGOING MINIMAL ACCESS ILIAC CREST BONE HARVEST FOR ALVEOLAR BONE GRAFTING
 Christopher Madsen, Denver Lough, Edward Swanson, Anne Tong Jia Wei, Devin Miller, Christine Fisher, Zoe MacIsaac, Anand Kumar

13. **203** QUALITY OF LIFE IN CHILDREN AFFECTED WITH AN ORAL CLEFT: AGE AND REPORTER DIFFERENCES
 Amy Conrad, Nichole Nidey, Deborah Kocmarynski

14. **204** PATTERNS OF ANOMALOUS VENOUS DRAINAGE IN CHILDREN WITH SYNDROMIC CRANIOSYNOSTOSIS
 Andrea Copeland, Caitlin Hoffman, Suzanne Laughlin, Emily Ho, James Drake, Christopher Forrest
15. PSYCHOSOCIAL PREDICTORS OF BEHAVIORAL CHALLENGES AND CARIES EXPERIENCE OF CHILDREN WITH OROFACIAL CLEFTS IN THE DENTAL SETTING
Angela Cook, Carolyn Kerins, Celia Heppner

16. RELATIONSHIP BETWEEN SEVERITY OF OBSTRUCTIVE SLEEP APNEA AND VELOPHARYNGEAL AREA IN MIDDLE-AGED ADULTS WITH PHARYNGEAL FLAP: POLYSONOMNOGRAPHIC AND RHINOMANOMETRIC STUDY
Letícia Campos, Eliete Bighetti, Inge Elly Trindade, Ivy Suedam

17. RETROSPECTIVE EVALUATION OF SLEEP STUDIES OF CHILDREN WITH ROBIN SEQUENCE WHO HAD UNDERGONE DISTRACTION OSTEOSYNTHESIS OF THE MANDIBLE: DO THEY HAVE PERSISTENT CENTRAL APNEAS AFTER IMPROVEMENT OF OBSTRUCTIVE SLEEP APNEA?
Refika Ersu, Jeffrey Hammoudeh, Karla Haynes, Mark Urata, Sally L. Davidson Ward

18. STANDARDIZATION OF A PROTOCOL FOR THE ASSESSMENT OF QUÉBÉCOIS FRENCH-SPEAKING INDIVIDUALS WITH VELOPHARYNGEAL DYSFUNCTION — PART 1: DEVELOPMENT OF A SENTENCE SET
Caroline Erdos, Andreanne Mayrand, Miroslava Dimova, Alla Sorokin, Annie Salois, Kati Abel, Ericka Beaudoin, Johanie Bouchard, Sophie Lacour, Lisa Massaro, Elisa-Maude Mc Connell

19. THREE-DIMENSIONAL FACIAL ANALYSIS VERSUS EXTRAORAL IMPRESSION MAKING FOR PNAM MEASUREMENTS: A METHODOLOGICAL COMPARISON
Cameron Francis, Clifford Sheckter, Simon Gamer, John Groper, Sheila Nazarian Mobin, Elizabeth Rammer, Daniel Yu, Jesse Duncan, Mark Urata, Jeffrey Hammoodeh

20. THE EFFECTS OF POSTNATAL HYPERHIPOPHYRIDISM ON SUTURE MORPHOLOGY AND FUSION IN RABBITS WITH DELAYED-ONSET CRANIOSYNOSTOSIS
Benjamin Levine, Banafsheh Hosseinian, Harman Deol, James Cray, Joseph Losee, Greg Cooper, Michael Siegel, Seth Weinberg, Mark Mooney

21. THE NEED FOR A DEFINED GENETIC TESTING PROTOCOL IN THE INDIVIDUAL WITH CLEFT LIP AND/OR PALATE
Susan Starling Hughes, Holly Welsh, Alison Kaye, Shao Jiang

22. WHAT NOT TO MISS: OCCULT CAUSES OF MORBIDITY AND MORTALITY IN FGFR2-RELATED CRANIOSYNOSTOSIS SYNDROMES
Tara Wender, Elizabeth Bhoj, Jonathan Perkins, Elaine Zackai, Avni Santani, Carrie Heike, Donna McDonald-McGinn, Ralph Wetmore, Michael Cunningham, Anne Hing

23. THE SIGNIFICANCE OF NASAL SUBSTITUTIONS IN THE EARLY PHONOLOGY OF TODDLERS WITH REPAIRED CLEFT PALATE
Mary Hardin-Jones, Kathy Chapman

24. TVELOPHARYNGEAL STATUS OF CHILDREN WITH CLEFT PALATE WHO PRODUCE NASAL FRICATIVES
David Zajac, Linda Vallino

POSTER SESSION B
WEDNESDAY, APRIL 22
1:30 PM-6:30 PM

1. 3D VIRTUAL MODELS VS. PLASTER MODELS USING THE BILATERAL YARDSTICK
Cristiane Luz, Terumi Ozawa, Gunvor Semb, Daniela Gamba Garib, Amanda Ohashi, Daiana Bral, Telma Souza-Brosco, Araci Almeida, Rita de Cássia Lauris

2. BILATERAL CLEFT LIP AND PALATE REPAIR: 30 YEARS FOLLOW-UP OF THE MANCHESTER TECHNIQUE
Jonathan Wheeler

3. BONY SEPTOPLASTY DURING SECONDARY CLEFT RHINOPLASTY: ASSESSMENT OF COMPLICATIONS
Alessandra Ferrera, Sunil Tholpady, Tahir Youssef, Roberto Flores

4. COLLAPSING THE MAXILLARY SEGMENTS PRIOR TO GRAFTING IN A PATIENT WITH A MISSING PREMAXILLA
Min Kyeong Lee, Michelle Scott, David Precious, Stephen Yen
5. DEVELOPMENT OF VELOPHARYNGEAL INCOMPETENCE IN A WOODWIND MUSICIAN WITH A HISTORY OF CLEFT PALATE
 Karen Tessler, Paige Platenik

6. CONGENITAL TONGUE MASS WITH CONCOMITANT CLEFT PALATE AND BIFID TONGUE: A CASE REPORT AND REVIEW OF THE LITERATURE
 Jared Hiebert, Adam Johnson, Hanh Tran, Zhongxin Yu, Robert Glade

7. CRANIAL VAULT EXPANSION IN THE SETTING OF MULTISUTURE CRANIOSYNOSTOSIS AND ANOMALOUS VENOUS DRAINAGE: A METHOD OF AVOIDING INTRACRANIAL VENOUS HYPERTENSION
 Melinda Costa, Laurie Ackerman, Shawn Greathouse, Sunil Tholpady, Youssef Tahiri, Roberto Flores

8. EXTENSIVE GINGIVOPERIOSTEOPLASTY — AN ALTERNATIVE TO ALVEOLAR BONE GRAFTING IN PATIENTS WITH DIFFICULT CLEFT
 Susan Ho, Philip Chen

9. LANGUAGE SKILLS OF PRESCHOOLERS WITH CLEFT PALATE
 Kathy Chapman, Mary Hardin-Jones, Kristin Moreau, Rebecca Fetrow

10. MANAGEMENT OF THE LATERAL LIP ELEMENT IN ROTATION ADVANCEMENT TECHNIQUE FOR CLEFT LIP REPAIR: TIPS AND TRICKS
 Gaurav Deshpande, Alex Campbell

11. NORMATIVE NASALANCE DATA IN MONGOLIAN CHILDREN
 Shagdar Batsukh, Bat-Erdene Myagmar, Amarsaikhan Bazar, Nagato Natsume, Ariuntuul Garidkhuu

12. PARADOXICAL MANDIBULAR GROWTH PATTERN IN CRANIOFACIAL MICROSOMIA PATIENTS
 Michelle Scott, Won Lee, Luciane Menezes, Stephen Yen

13. PREVENTION OF EYE SWELLING FOLLOWING FRONTO-ORBITAL ADVANCEMENT USING PERI-ORBITAL KENOLOG INJECTION
 M. Barbara Honnebier, Gregory Albert, Rongsheng Cai, Eylem Ocal

14. SOCIAL FUNCTIONING MODERATES THE RELATION BETWEEN APPEARANCE-RELATED CONCERNS, AND EMOTIONAL AND CONDUCT PROBLEMS AMONG YOUTH WITH CLEFT LIP AND/OR PALATE
 Ashley Shields, Amy Paysnick, Nicole Quinlan

15. STANDARD PATIENTS IN CRANIOFACIAL SPEECH PATHOLOGY EDUCATION?
 Lynn Grames

16. STARTING AND MAINTAINING A CRANIOFACIAL ORTHODONTIC CLINIC — FINANCIAL CONSIDERATIONS
 Lindsay Schuster, Adriana Da Silveira, Pedro Santiago, Patricia Glick

17. SURGICAL EDUCATION THROUGH VIDEO BROADCASTING
 Eric Nagengast, Margarita Ramos, Gaurav Deshpande, Hiteswar Sarma, Kristin Hatcher, William Magee, Alex Campbell

18. THE BUCKY-BALL EVOLUTION TO FRACTAL Y PATTERN RECONSTRUCTION FOR SAGITTAL CRANIOSYNOSTOSIS
 John Menezes, William Scott

19. THE CLEFT TEAM SOCIAL WORKER
 Sandra Lybrand, Helen Huff, Alison Kaye

20. THE MOVING PARTS OF TEAM CARE: A VISUAL MODEL
 Karla Haynes, Alexis Johns, Laura Garcia

21. THE NUMBER OF SURGICAL PROCEDURES FOR PATIENTS WITH CLEFT LIP AND PALATE FROM BIRTH TO 21 YEARS OLD AT A SINGLE CHILDREN'S HOSPITAL
 Harleen Sethi, Elissa Kim, Joyce McIntyre, Marilyn Jones, Amanda Gosman

22. THREE DIMENSIONAL PLANNING & RECONSTRUCTION OF THE MANDIBLE IN CHILDREN WITH HEMIFACIAL MICROSOMIA TYPE IIB & III USING COSTOCHONDRAL GRAFT
 Omri Emodi, Dror Aizenbud, John van Aalst, Luiz Pimenta, Adi Rachmiel
WEB-BASED DATA SHARING APPLICATION FOR ESTABLISHING HORIZONTALLY-INTEGRATED CLINICAL NETWORKS BETWEEN HUMANITARIAN CLEFT MISSIONS AND THEIR HOST NATIONS: MISSION TRACKER
Tom Walker, Peter Ayliffe, Ambika Chadha, Paul Coles, Caroline Mills

A SLICE IN THE LIFE — A PRETEEN WITH AN UNUSUAL COMPLICATION
Umesh Parajuli, Bonita Lippman-Hoskins

ADDRESSING PSYCHOSOCIAL NEEDS: UTILIZATION OF A MEDICAL SOCIAL WORKER IN COMPREHENSIVE TEAM-CENTERED CLEFT CARE
Sandra Lybrand, Helen Huff, Alison Kaye

COMPARISON OF NON-OPIOID AND OPIOID ORAL ANALGESIA FOLLOWING PEDIATRIC PALATOPLASTY
Brandon Pierson, Robert Glade

COMPARATIVE STUDY OF TWO DIFFERENT PRESURGICAL ORTHOPEDIC METHODS IN PATIENTS WITH COMPLETE UNILATERAL CLEFT LIP AND PALATE
Tania Hechenleitner, Luis Monasterio, Bolivar Valenzuela, Marcelo Nuñez, Maria Eugenia Tastets, Carolina Cornejo, Erin Balocchi

DOES PERIOPERATIVE STEROID USE IMPROVE CLINICAL OUTCOMES IN OPEN REPAIR OF CRANIOSYNOSTOSIS: A SYSTEMATIC REVIEW AND META-ANALYSIS
Christopher Madsen, Anne Tong Jia Wei, Arwa Al-Sheemy, Anand Kumar

ENVIRONMENTAL FACTORS CONTRIBUTING TO GENETIC MUTATIONS IN THE PATHOGENESIS OF HUMAN OROFACIAL CLEFTS IN GHANA
Lord Gowans, Pius Agyenorku, Azeexe Butal, Peter Donkor, Solomon Obiri-Yeboah, Gyikua Plange-Rhule, Jeffrey Murray

EXTENT OF MAXILLARY DEFICIENCY IN PATIENTS WITH UCLP AND BCLP
Joerg Lisson, Catharina Weyrich

IT IS WORTHY ANTERIOR PALATAL CLOSURE DURING CLEFT LIP REPAIR IN INFANTS
Mamdouh Aboulhassan, Seham Anwar, Ashraf Enb, Ahmed Sadat, Dawlat Emara

KISS SMILEATHONS IN A VOLATILE ME COUNTRY
Bona Shitiri

NASO PHARYNGEAL TUBE AND HYPERCAPNIA IN PIERRE ROBIN SEQUENCE
Jacques Saboye

PHENOTYPIC SUB-GROUPING IN MICROTIA USING A STATISTICAL AND A CLINICAL APPROACH
Daniela Luquetti, Babette Saltzman, Carrie Heike, Kathleen Sie, Craig Birgfeld, Kelly Evans, Brian Leroux

NAVIGATING SOCIAL CHALLENGES: LIFE WITH A CLEFT LIP AND PALATE
Robert Mann, Alan McEvoy, Anthony Meir, Matthew Fahrenkopf

PILOT STUDY: SPEECH THERAPY APPLYING VENTRILIOQUISM
Toko Hayakawa, Chisako Inoue, Tomoko Mori, Yoshiko Aihara, Kyoko Banno, Hiyori Makino, Satoshi Suzuki, Nagato Natsume

PRE-OPERATIVE CLEFT LIP MEASUREMENTS AND MAXILLARY GROWTH IN PATIENTS WITH UNILATERAL CLEFT LIP AND PALATE
Gregory Antonarakis, Bryan Tompson, David Fisher

PREVALENCE OF ANEMIA IN PATIENTS WITH THE DIAGNOSIS OF CLEFT LIP AND/OR PALATE
Ramon Aleman

PREVALENCE OF FISTULAS FOLLOWING PRIMARY CLEFT SURGERIES IN MISSIONS AROUND PERU
Margot Escobedo, Margarita Marchino

ROLE OF A COMBINATION OF DEMINERALIZED FREEZE-DRIED BONE AND PLATLETS RICH FIBRIN IN ALVEOLAR BONE GRAFTING
Sameh Monier, Hazem Shawky
18. THE PREVALENCE OF ORAL CLEFTS IN PUERTO RICO (2001-2010)
 Carmen Buxo, Lydie López-Del Valle, Natalio Debs,
 Maria Salcedo, Lourdes García-Fragoso, José Cordero, Miguel Valencia Prado, Mairim Soto-Ortiz, Maria Angulo-Martínez, Jeffrey Murray

19. THE PREVALENCE OF OROFACIAL CLEFTS IN ETHIOPIA
 Mekonen Abebe, Fikre Abate, Azeez Butali, Miliard Deribew, Mulalem Gesses, Paul Gravem, Taye Hailu, Ibrahim Mohammed, Peter Mossey

20. VELOFARYNGEAL INSUFFICIENCY MANAGEMENT WITH A PALATOPLASTY WHICH COMBINES INTRAVELAR VELOPASTY AND Z PLASTY
 Rolando Prada, Maria Bibiana Mendoza, Pilar Echeverri

21. “HOW DO I LIKE IT” - PATIENTS PERSPECTIVE ON REPAIRED CLEFT LIP OR PALATE
 Tahir Sheikh

POSTER SESSION D
FRIDAY, APRIL 24
8:00 AM-12:30 PM

1. 3D MAXILLARY DENTAL ARCH OF TWO PROTOCOLS IN CHILDREN WITH CLEFT LIP AND PALATE
 Paula Karine Jorge, Karine Vaz Laskos Sakoda, Cleide Felício de Carvalho Carraro, Daniela Gamba Garib, Terumi Okada Ozawa, Wanda Gnoinski, Maria Aparecida de Andrade Moreira Machado, Thais Marchini Oliveira

2. A SURVEY OF THE LONG-TERM EFFECTS OF SURGERY FOR VELOPHARYNGEAL INSUFFICIENCY ON SLEEP
 Grant Jameson, Niyant Patel, Ananth Murthy, James Lehman

3. AN EVALUATION OF THE SOCIAL WORK ROLE ON A CRANIOFACIAL TEAM
 Cassandra Aspinall, Ashley Peter, Daniela Luquetti, Sarah Bergman-Lewis, Carrie Heike

4. THE ROLE OF HEALTH CARE SUPPORT IN EDUCATIONAL PERFORMANCE OF LOW-SOCIOECONOMIC CHILDREN WITH BILATERAL SENSORINEURAL HEARING LOSS WITH AND WITHOUT CLEFT PALATE
 Naeimeh Daneshmandan, Pouya Mahmoudzadeh Tusse, Samaneh Hosseinzadeh

5. COST OF CARE FOR CHILDREN WITH 22Q11.2 DELETION SYNDROME: NATIONAL TRENDS
 Jennifer Rhodes, Richard Youn, Ruth Trivelpiece

6. DECELLULARIZED PORCINE MAXILLA AS A NOVEL SCAFFOLD FOR AUTOLOGOUS STEM CELL TREATMENTS OF THE ALVEOLAR CLEFT
 Justin Morse, Amita Shah, Montserrat Caballero, Jeyhan Wood, John van Aalst

7. DEFORMATIONAL PLAGIOCEPHALY AND CRANIOSYNOSTOSIS: TRENDS IN DIAGNOSIS AND TREATMENT AFTER THE “BACK TO SLEEP” CAMPAIGN?
 Leslie Branch, Kendra Kesty, Elizabeth Krebs, Lindsey Wright, Stephanie Leger, Lisa David

8. DESCRIPTIVE EPIDEMIOLOGY OF OROFACIAL CLEFTS IN AFRICA USING DATA FROM 46,502 SMILE TRAIN SURGERIES
 Azeez Butali, Keyla Pagan-Rivera, Deborah Dawson, Mekonen Esthe, Wasiu Adeyemo, Ronald Munger, Peter Mossey

9. DEVELOPMENT OF A NOVEL SONOGRAPHIC GRADING SYSTEM TO EVALUATE PRIMARY ALVEOLAR GRAFTING IN CLEFT LIP/PALATE TREATMENT
 Daniel Chang, Melissa Kanack, Dolores Pretorius, Stephanie Calvert, Cesar Patino-Ochoa, Amanda Gosman

10. DIGITAL IMAGING 101 FOR THE CLEFT LIP/PALATE AND CRANIOFACIAL TEAM
 Mary Spano, Patricia Chibbaro

11. EDUCATIONAL VIDEO ABOUT THE POSTOPERATIVE CARE OF LIP REPAIR AND PALATOPLASTY
 Ana Paula Ribeiro Razeira, Armando dos Santos Trettene, Cleide Carolina da Silva Demoro Mondini, Maria de Lourdes Merighi Tabaquim
12. FACTORS ASSOCIATED WITH OCCURRENCE OF COMPLICATIONS IN PATIENTS UNDERGOING SURGICAL REPAIR FOR CRANIOSYNOSTOSIS
 Veerasathpurush Allareddy

13. EXPANSION OF THE SPEECH PATHOLOGY SECTION OF THE CRUX DATABASE TO FACILITATE THE RECORDING OF EARLY SPEECH AND LANGUAGE DATA
 David Fitzsimons, Anna Cronin

14. HOW DOES PLASTIC SURGICAL TRAINING AFFECT AESTHETIC PREFERENCE IN HYPERTELORISM REPAIR? AN EMPIRIC RE-EXAMINATION OF CLASSIC AESTHETIC NORMS
 Michael Alperovich, Raj Vyas, Mary Spano, David Staffenberg, Joseph McCarthy

15. IN UTERO EXPOSURE TO THYROXINE RESULTS IN ALTERED POST-NATAL SKULL SHAPE IN MICE
 Trish Parsons, Seth Weinberg, Mohammed Eslalanty, R. Howie, Jack Yu, James Cray

16. OUTCOMES OF PEDIATRIC CALVARIAL RECONSTRUCTION WITH POROUS POLYETHYLENE ALLOPLASTIC IMPLANTS: AN INTERIM UPDATE
 Liliana Camison, Wei-Wei Lee, Renata Maricevich, Lorelei Grunwaldt, Jesse Goldstein, Joseph Losee

17. INITIAL CLEFT SIZE IN UNILATERAL CLEFT LIP AND PALATE IS CORRELATED WITH DENTAL MALPOSITIONING AND ENAMEL HYPOPLASIA
 Fatima Jabbari, Daniel Nowinski, Erika Reiser

18. OUTCOMES OF ROBIN SEQUENCE AT CINCINNATI CHILDREN’S: A 12-YEAR RETROSPECTIVE ANALYSIS
 Kathryn Nicole Weaver, Xue Zhang, Patricia Bender, Robert Hopkin, Howard Saal

19. NASOENDOSCOPIC AND VIDEOFLUOROSCOPIC PREDICTORS OF OUTCOMES OF VPI SURGERY
 Christian Albert El Amm, Ramesh Kaipa, Erika Lee, Aaron Morgan, Thomas Howard, Omar Beidas, Cheryl Giddens

20. PEDIATRIC DENTAL APPOINTMENT ATTENDANCE IN CHILDREN WITH CRANIOFACIAL ANOMALIES
 Jacob Johnson, Erin Shope, Lenora Colaruotolo

21. SUBTLE GENOMIC Mosaicism as an UNDERLYING CAUSE OF CRANIOSYNOSTOSIS
 Pedro Sanchez, Chi Phan, Howell Lori, Mark Urata

22. TEASING PREVENTION IN PRESCHOOL CHILDREN WITH REPAIRED CLEFT LIP AND PALATE
 Sharon Vargas

23. “I HEARD IT THROUGH THE GRAPEVINE”: COMMUNICATION AS A CLEFT TEAM PROVIDER
 Terri McCaffrey

POSTER SESSION E
FRIDAY, APRIL 24
1:00 PM-5:00 PM

1. A NASOPHARYNGOSCOPY ANALYSIS OF THE SOFT PALATE AFTER FURLOW Z-PLASTY
 Wancong Zhang, Shijie Tang, Sitian Xie, Hongmin Luo Tansipek

2. COMMUNITY ETHNIC/LINGUISTIC MATCH AND QUALITY OF LIFE IN CHILDREN WITH CRANIOFACIAL ANOMALIES
 Lillian Hamill, Celia Heppner, Crista Donewar, Lauren Perrin

3. CRANIOFACIAL MICROsomia: Longitudinal outcomes in children pre-kindergarten (clock)
 Daniela Luquetti, Carrie Heike, Babette Saltzman, Alexis Johns, Amelia Drake, David Sarwer, Brian Leroux, Kathleen Kapp-Simon, Matthew Speltz

4. A MODEL FOR ADHERENCE IN HIGH RISK CRANIOFACIAL PATIENTS
 Laura Garcia, Karla Haynes, Alexis Johns

5. ENHANCEMENT OF THE PATIENT AND FAMILY EXPERIENCE THROUGH IMPLEMENTATION OF CRANIOFACIAL PROGRAM SPONSORED EVENTS
 Bethany Lechtanski, Coreen Abston, Carolyn Walborn, Christian Vercler

6. EVALUATING USER EXPERIENCE OF CLEFT PERSONALIZED MEDICAL RECORD (PHR) FOR PATIENTS WITH CLEFT LIP AND PALATE OR THEIR PARENTS
 Byungjun Kim, Jisan Mari Lee, Meiling Jin, James G. Boram Kim, Jeongeun Kim, Kiwhan Ahn, Joonkyu Park, Sukwha Kim
7. OUT-OF-POCKET COSTS IN DENTAL AND ORTHODONTIC MANAGEMENT OF PATIENTS WITH CLEFT LIP AND/OR PALATE
 Erin Shope, Yasmine Zangeneh, Peter Koltz

8. EVIDENCE FOR USE OF FRONTOZYGOMATICUS AND CONTRALATERAL EURIONS AS HAND-CALIPER LANDMARKS FOR ASSESSMENT OF DEFORMATIONAL PLAGIOCEPHALY
 Gary Skolnick, Sybill Naidoo, Dennis Nguyen, Kamlesh Patel, Albert Woo

9. EXPLORING TRENDS IN MEDICAL MALPRACTICE CLAIMS IN PATIENTS WITH CRANIOFACIAL ABNORMALITIES
 Rounak Rawal, Lauren Kilpatrick, Jeyhan Wood, Amelia Drake

10. FACTORS ASSOCIATED WITH CONCEPTION AND BIRTH OF CHILDREN WITH NON SYNDROMIC CLEFT LIP AND PALATE IN A SOUTH WESTERN NIGERIAN POPULATION
 Fadekemi Oginni, Olufemiwa Makinde, Ayodeji Oladele, Anthony Adenekan, Abimbola Phillips

11. HIGHT IMPACT PAPERS IN CLEFT LIP AND PALATE LITERATURE: A CITATION ANALYSIS
 Kashyap Tadisina, Bahar Bassiri Gharb, Karolina Mlynek, Grzegorz Kwiecien, Susan Orra, Huseyin Elbey, Karolina Mlynek, Grzegorz Kwiecien, Susan Orra, Huseyin Elbey

12. LONGITUDINAL COMPARISON OF THE SPEECH AND LANGUAGE PERFORMANCE OF US-BORN AND INTERNATIONALLY ADOPTED TODDLERS WITH CLEFT LIP AND PALATE
 Nancy Scherer, Shauna Baker, Ann Kaiser, Lauren Kleinert

13. MORPHOLOGIC VARIATION BETWEEN PARTIAL- AND COMPLETE-SAGITTAL SUTURE FUSION IN NONSYNDROMIC ISOLATED SAGITTAL SYNOSTOSIS
 Leathan Domeshke, John Li, Gary Skolnick, Sybill Naidoo, Dennis Nguyen, Kamlesh Patel, Albert Woo

14. SPHINCTER PHARYNGOPLASTY DOES NOT PREDICT MAXILLARY HYPOPLASIA AND LE FORT I ADVANCEMENT SURGERY IN CLEFT PATIENTS
 Li Han Lai, Brian Hui, Frances Yoshikane, Deborah Martins, Roop Gill, James Bradley, Libby Wilson, Justine Lee

15. PREOPERATIVE VELOPHARYNGEAL MORPHOLOGY IN OLDER PATIENTS WITH CLEFT PALATE
 Hongfang Ma, Li Ma, Qian Zheng, Bing Shi

16. THE CHOP CLEFT APP™: AN IPAD™-BASED APPLICATION FOR TEACHING AND LEARNING CLEFT LIP TECHNIQUES
 Brianne Mitchell, Jordan Swanson, Patrick Gerety, Mary Sun, Ari Wes, Jesse Taylor

17. SCREENING FOR AUDITORY HALLUCINATIONS IN CHILDREN WITH HEARING LOSS IN CRANIOFACIAL TEAM
 Iris Richardson, Victoria Mena, Alexis Johns

18. SECONDARY CORRECTION OF MICRONOSTRIL IN INCOMPLETE CLEFT LIP DEFORMITY
 Xilin Jing, David Hindin, Justine Lee, James Bradley

19. SECONDARY CRANIOSYNOSTOSIS IN CHILDREN WITH SHUNTED HYDROCEPHALUS: SYSTEMATIC REVIEW OF PRESENTATIONS AND TREATMENT OUTCOMES
 Bayan Al-Saihati, Hannah Polus, Samer Elbabaa, Alexander Lin

20. SEVERITY OF CLEFT VERSUS AESTHETIC PRIMARY LIP REPAIR OUTCOMES: PILOT STUDY WITH COMPLETE UNILATERAL CLEFT OF LIP AND PALATE CASES
 Pollyana De Moura, Yongjong Park, Alex Kane, James Seaward, Christopher Derderian, James Smartt

21. USE OF BMP-2 IN ALVEOLAR CLEFT REPAIR DOES NOT RESULT IN STATISTICALLY HIGHER INCIDENCE OF NASAL STENOSIS
 Jeremy Goss, Margie Hunter, Alexander Lin

22. “DIGITAL 3D BILATERAL YARDSTICK” FOR ASSESSING DENTAL ARCH RELATIONSHIP IN PATIENTS WITH COMPLETE BCLP
 Terumi Okada Ozawa, Gunvor Semb, William Shaw, Christos Katsaras, Anne Marie Kuijpers-Jagtman, Catharina Hagberg, Elisabeth Ronning, Daniela Gamba Garib, Cristiane Luz, Amanda Ohashi, Daiana Broll

23. THE EVOLUTION OF THE SURGICAL TREATMENT OF ROBIN SEQUENCE
 Shawn Greathouse, Melinda Costa, Alessandra Ferrera, Yousef Tahiri, Sunil Tholpady, Robert Havlik, Roberto Flores
Important Notice

The following pages contain a roster of the full text of the oral presentation abstracts. A roster of all abstracts is available online via the ‘ACPA 2015’ app, and through the Detailed Program Schedule available at http://meeting.acpa-cpf.org/schedule.html. The Scientific Program Agenda lists abstract titles with the primary author listed first, followed by co-authors, if any. The presenter’s name is bolded.

All program planners, faculty, presenters, authors and relevant staff members are required to disclose any financial as well as professional or personal relationships that they could be affected by, or which could have an effect, on the content of the presentations. This information is requested during the planning and abstract submission process. Faculty members are required to declare disclosures, if any, at the beginning of his/her presentation.

Abstract numbers that are marked with an asterisk (*) indicate that an author or presenter disclosed commercial or industrial funding, consulting, or equity holdings, or personal relationship(s) potentially relevant to his or her presentation. Asterisks placed next to a session chair or co-chair name indicate these individuals had disclosures to report.

Otherwise, all remaining authors, presenters, and session chairs and co-chairs indicated they had nothing to disclose.

Disclosures for all participants can be found online at http://meeting.acpa-cpf.org/abstract-disclosures.html

For more information on disclosure policies and disclaimers, please refer to page 4 of this program.
JOURNAL MANUSCRIPT PREPARATION AND SUBMISSION

Jack Yu, Georgia Regents University, Augusta, GA

Background & Purpose: This Eye Opener will be given by members of the "Cleft Palate-Craniofacial Journal" Editorial Board.

Methods & Description: Section Editors from a variety of disciplines will discuss what constitutes a good scientific manuscript, what kinds of manuscripts are accepted, and what is required by the "Cleft Palate-Craniofacial Journal." Common problems in manuscript preparation and ways of avoiding them will be addressed.

Disclosure: Salary-Editor-in-Chief, Cleft Palate-Craniofacial Journal

COMMISSION ON APPROVAL OF TEAMS (CAT)

David Kuehn, University of Illinois at Urbana-Champaign

Contact Email: dkuehn@illinois.edu

Background & Purpose: An overview of the team approval application and review by the Commission on Approval of Teams (CAT) will be presented.

Methods & Description: There will be particular emphasis placed on questions requiring explanations relative to a team’s total quality improvement process and measures of treatment and protocol outcomes. The major problems encountered in the application process by the teams which have already completed the process will be discussed along with strategies offered to address specific areas of concern such as outcome measures of a team’s procedures.

Disclosure: Chair – ACPA Commission on Approval of Teams

CHALLENGING CASES OF VELOPHARYNGEAL DYSFUNCTION: SPEECH ASSESSMENT AND MANAGEMENT

Kristen DeLuca (1), Sara Kinter (2), Jamie Perry (3), Angela Dixon (4), (1) Joe DiMaggio Children’s Hospital, Hollywood, FL, (2) Seattle Children’s Hospital, Seattle, WA, (3) East Carolina University, Greenville, NC, (4) Riley Hospital for Children at Indiana University Health, Indianapolis, IN

Contact Email: KdeLuca@mhs.net

Background & Purpose: Speech outcomes are of paramount importance to members of craniofacial teams, however, the decision-making process to achieve the end goal is just as important as the final result. This session explores the decision-making process involved with the management of several challenging cases of velopharyngeal dysfunction. ASHA Division 5, Speech Science and Orificial Disorders, offers this eye opener session of case presentations to ACPA attendees.

Methods & Description: The authors will present a variety of cases with cleft and noncleft causes of VPD, with variable speech profiles, and different team frameworks for diagnosis and treatment decision-making. Multicultural factors which may influence treatment decision-making will also be discussed. Case information will be presented using a "choose your own adventure" style, in which audience participation will direct the discussion for each case. Each stage of the patient diagnostic and treatment process will be reviewed including information on case history, diagnostic protocol and findings, instrumental assessment choices and findings, treatment options, and pre- and post-treatment speech outcomes. Options for who judges the speech outcome and how the outcome is judged will also be discussed. Cases will be presented in both audio and video format.

THE AMERICAN CLEFT PROJECT: PROGRESS AND GUIDELINES FOR PARTICIPATION IN COLLABORATIVE INTERCENTER OUTCOMES STUDIES

Ross Long, Jr (1), Kathy Chapman (2), Kathleen Kapp-Simon (3), Amy Conrad (4), Thomas Sitzman (5), (1) Lancaster Cleft Palate Clinic, Lancaster, PA, (2) University of Utah, Salt Lake City, UT, (3) Shriner’s Hospitals for Children Chicago, IL, (4) The University of Iowa Hospitals and Clinics, Iowa City, IA, (5) Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

Contact Email: rlong@cleftclinic.org

Background & Purpose: The purpose of this eye opener is to 1) provide an update on the current status of the Americleft Project; 2) provide details about carrying out actual outcomes comparisons of internal quality assurance audits; 3) encourage participation by other individuals, centers, and disciplines; and 4) discuss the requirements necessary for others centers to collaborate and participate in the project.

Methods & Description: The presentation will include background information about the inception and growth of the project and progress made by the Orthodontic Informational Group. Information will also be provided about the progress made by the Speech Group in developing standard procedures for data collection and analysis and conducting reliability studies to allow for reliable rating of speech data. In addition to providing an update on progress with data collection across participating centers, goals for the next phase of the Speech project will be presented. The Psychology/Social Work Group will report on several outcomes that are being pilot tested, including: social, behavioral, emotional, cognition/learning, self-perception, and quality of life. A new Surgical Group has also been started and will report on its initial efforts on prospective evaluation of outcomes after lip and palate repairs followed by development of a common set of measures including establishment of a system for consistent outcome measurement across teams. Using this information to support quality improvement efforts, all Groups are attempting to coordinate and synergize their initiatives. The session will conclude with an open discussion between the audience and presenters.

HOW QUALITATIVE METHODS CAN BE USED TO ENSURE CONTENT VALIDITY IN A PATIENT REPORTED OUTCOME (PRO) INSTRUMENT FOR PATIENTS WITH CLEFT LIP AND/OR PALATE WHO VARY BY AGE AND CULTURE: DEVELOPMENT OF THE CLEFT-Q

Elena Tsangaris (1), Stefan Cano (2), Christopher Forrest (3), Tim Goodacre (4), Anne Klassen (1), Andrea Pusic (5), Karen Wong (6), (1) McMaster University, Hamilton, Ontario, (2) Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, (3) The Hospital for Sick Children, Toronto, Ontario, (4) Oxford University Hospitals, Headington, Oxford, (5) Memorial Sloan Kettering Cancer Center, New York, NY, (6) Hospital for Sick Children, Toronto, ON

Contact Email: tsangae@mcmaster.ca

Background & Purpose: Cleft lip and/or palate (CLP) is the most common congenital craniofacial anomaly. The CLEFT-Q is a PRO instrument designed to measure outcomes that matter to patients with CLP. Content for the CLEFT-Q was developed from qualitative interviews with 138 patients with CLP from 6 countries (Canada, US, UK, India, Kenya, Philippines). CLEFT-Q scales measure the following concepts: appearance, speech, psychological, social and functional issues. The aim of presentation is to describe the cognitive phase of the study. This phase used qualitative methods (interviews with patients and experts) to ensure maximum content validity based on two key variables hypothesized to cause group-level differences in responses, patient age and country. The overall goal was to identify items of the CLEFT-Q that are relevant to all patients or are age and/or country specific.

Methods & Description: We completed multiple separate rounds of data collection with patients 5-29 years of age, and focus groups or individual feedback with healthcare providers. Input was used to revise the instructions, response options, item wording, and identify missing content.

Results: Round 1 involved 17 patients and 13 experts. All found the instructions easy to understand. Feedback identified changes required to the response options and items (e.g., 8 items were kept without revision; 101 items were revised; 47 were dropped; 2 new scales added). Round 2 involved 23 participants and 5 experts. This round clarified the best response options to use, and identified 52 items that required revision. Subsequent rounds resulted in fewer identified changes. Translation of the instrument in Dutch and Turkish helped to clarify items that were challenging to translate in other languages (i.e., in Dutch, there are multiple translations for the word ‘some’), and items relevant to patients of younger vs. older age (e.g., younger patients felt the question ‘it sounds like I speak out of my nose (nasally)’ was the same as ‘it sounds like I have a cold when I speak’), as well as those specific to particular countries (e.g., patients from the Netherlands suggested to add a question to the eating and drinking scale about getting food stuck in the palate).

Conclusions: Cognitive interviews are vital to ensuring content validity in PRO instruments. The CLEFT-Q is now being field-tested internationally.

PRACTICE PATTERNS FOR MANAGEMENT OF VELOPHARYNGEAL DYSFUNCTION IN PATIENTS WITH 22Q11.2 DELETION SYNDROME

Kaitlyn Paine (1), Cynthia Solot (2), Ariel Pollak (2), Ava Skolnik (2), Donna McDonald-McGinn (2), (1) The Children’s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, (2) The Children’s Hospital of Philadelphia, Philadelphia, PA

Contact Email: kcalcorn@mail.med.upenn.edu

Background & Purpose: To assess practice patterns for the management of velopharyngeal dysfunction (VPD) in 22q11.2 Deletion Syndrome (22q11.2DS).

Methods & Description: An anonymous electronic survey was administered to the surgeon membership of the American Cleft Palate-Craniofacial Association and the Society for Ear Nose and Throat Advances in Children
Takayoshi Sakai
airway management decisions on the type of procedure planned (p=0.010) in differed by specialty. Otolaryngologists were more likely to perform post-
(11%). No differences were noted in pre-operative requirements with the cardiac evaluation (50%), carotid artery MRI (29%), and cervical spine x-rays following evaluations: speech evaluation (79%), velopharyngeal imaging (51%), and pharyngoplasty for VPD in 22Q11.2DS patients, surgeons required the commonly by otolaryngologists (p=0.045). Prior to proceeding with imaging, the majority of respondents preferred nasoendoscopy in 22Q11.2DS (p=0.0312). Otolaryngologists were more likely to base treatment decisions on first approach in nonsyndromic patients (p=0.017), and more likely to perform posterior pharyngeal flap without SMCP repair in 22Q11.2DS patients (p=0.0312). Otolaryngologists were more likely to base treatment decisions on the severity of VPD in both patient groups (p=0.028; p=0.016), while plastic surgeons were more likely to perform SMCP repair alone as their first approach in nonsyndromic patients (p=0.017), and more likely to perform posterior pharyngeal flap without SMCP repair in 22Q11.2DS patients (p=0.0312). Otolaryngologists were more likely to base treatment decisions on the severity of VPD in both patient groups (p=0.028; p=0.016), while plastic surgeons were more likely to perform SMCP repair alone as their first approach in nonsyndromic patients with SMCP and VPD (p=0.027). For velopharyngeal imaging, the majority of respondents preferred nasoendoscopy in 22Q11.2DS (92%) and nonsyndromic patients (89%). In addition to nasoendoscopy, US surgeons were more likely to use videofluoroscopy in all patients and lateral neck x-rays in 22Q11.2DS patients (p=0.0455). Videofluoroscopy was more commonly used by plastic surgeons in 22Q11.2DS patients (p=0.013), and less commonly by otolaryngologists (p=0.0455). Prior to proceeding with pharyngoplasty for VPD in 22Q11.2DS patients, surgeons required the following evaluations: speech evaluation (79%), videofluoroscopy imaging (51%), cardiac evaluation (50%), carotid artery MRI (29%), and cervical spine x-rays (11%). No differences were noted in pre-operative requirements with the presence of a 22q Center. Upper airway management prior to pharyngoplasty differed by specialty. Otolaryngologists were more likely to perform post-operative sleep studies when symptoms were present (p=0.050), and to base airway management decisions on the type of procedure planned (p=0.010) in patients with 22q11.2DS. Otolaryngologists were also more likely to recommend tonsillectomy and adenoidectomy for sleep apnea or a positive sleep study in 22Q11.2DS and nonsyndromic patients.

CONCLUSIONS: Management of VPD varies worldwide and by specialty.

THE RELATIONSHIP BETWEEN CEACAM1, CK13, AND TGFβ IN PALATAL FUSION
Takayoshi Sakai (1), Aya Obana-Koshino (1), Hitomi Ono (1), Kanji Nohara (1), Kyoko Oka (2). (1) Osaka University, Suita, Osaka, (2) Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka
Contact Email: sakai@dent.osaka-u.ac.jp

BACKGROUND & PURPOSE: Cleft palate is one of the most common congenital craniofacial anomalies in humans. It has a varied etiology resulting from a mixture of genetic and environmental factors and results in the failure of the bilateral palatal shelves to fuse. We reported at the previous ACPA meeting that CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1) and CK13 (cytokeratin 13) were identified as new regulators for palatogenesis using microarray analysis. TGFβ3 is already known as an important factor involved in palatal fusion. The objective of this study was to elucidate the relationship between CEACAM1, CK13, and TGFβ in palatal fusion.

METHODS & DESCRIPTION: To investigate the developmental role of CEACAM1, functional blocking antibody (CC1) was added into organ culture of embryonic mouse palate, and also pathogenesis in Ceacam1-deficient (Ceacam1-/-) mice was characterized histologically. We performed immunohistochemical analysis to investigate TGFβ expression, apoptosis, and proliferation in the palate of Ceacam1-/- mice. CEACAM1 expression was also examined in TGFβ-deficient mice for comparison. Furthermore, the distribution of CK13 during palatal fusion was investigated.

RESULTS: Palatal fusion of wild-type mice ex vivo was inhibited by CC1. We observed that MES (medial epithelial seams) in Ceacam1-/- mice remained even at E16, which means that palatal fusion was delayed in Ceacam1-/- mice. Ceacam1 expression was observed in the MEE (medial edge epithelium) of anterior and posterior regions of palatal shelves in wild-type mice before and during fusion, so CEACAM1 may be involved in early palatal fusion. TGFβ3 expression, apoptosis, and proliferation were not changed in the palate of Ceacam1-/- mice, compared with wild-type mice. CEACAM1 expression was retained in the remaining MEE of the palate of TGFβ-deficient mice, compared with wild-type mice. CK13 was also retained in the remaining MEE.

CONCLUSIONS: The CC1 antibody and Ceacam1-/- mice showed an inhibition of palatal fusion. These results demonstrate that CEACAM1 could be related to the initiation of palatal fusion. The status of the TGFβ3 signaling pathway could influence CEACAM1 and CK13 expression. Further analysis would be important to elucidate the relationship of CEACAM1, CK13, and TGFβ3 in palatal fusion for the future treatment of cleft palate.

8

COMPARISON OF CULCP DENTAL ARCH RELATIONSHIPS BETWEEN 5 CENTERS WITH VARIED INFANT MANAGEMENT PROTOCOLS (NAM, GPP, PRIMARY GRAFTING, INFANT ORTHOPEDICS
Stephen Beals (1), Patricia Glick (1), Ross Long, Jr (2), John Daskalogiannakis (3), Ronald Reed Hathaway (4), Kathleen Russell (5), Thomas Sitzman (6), Andrea Smith (2), Gunvor Semb (7), William Shaw (7). (1) Barrow Cleft And Craniofacial Center, Phoenix, AZ, (2) Lancaster Cleft Palate Center, Lancaster, PA, (3) The Hospital for Sick Children, Toronto, Ontario, (4) Peyton Manning Children’s Hospital, Zionsville, IN, (5) Dalhousie University/IWK Health Centre, Halifax, NS, (6) Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, (7) University of Manchester, Manchester, United Kingdom
Contact Email: SPB@BEALSMD.COM

BACKGROUND & PURPOSE: The benefits of additional features of infant management protocols such as NAM +/- GPP and IO +/- primary bone grafting remain controversial. This study compared mixed dentition CULCP dental arch relationships treated at centers using a range of such infant management protocols.

METHODS: Dental casts of 157 consecutively treated patients with CULCP in the mixed dentition (mean age 8yrs/6mos) were blindly rated by 5 calibrated raters (2 orthodontists, 1 prosthodontist, 1 surgeon) using the Goslon Yardstick, which scores dental arch relationship outcomes using a 5 point scale (1=best, 5=worst). In addition to lip and palate repair, the primary protocol at Center 1 (n=26) included use of NAM or IO +/- GPP; Center 2 (n=16) protocol was limited to lip and palate repair only; Center 3 (n=39) used IO with primary bone grafting; Center 4 (n=36) used NAM without GPP; Center 5 (n=40) used lip and palate repair only. Dental casts were prepared identically for blinding, and were rated twice. All 10 scores for each patient were averaged to calculate mean Goslon ratings. Inter- and intra-rater reliabilities were tested using the weighted Kappa statistic. Medians and SD’s were calculated for each group and tested statistically using the Kruskal-Wallis test with multiple comparisons setting Family Alpha at .10 with Bonferroni individual Alpha of .01.

RESULTS: Intra- and inter-rater reliability scores were excellent (mean=.864, range=.824-.902; and mean=.836, range=.785-.866 respectively). Kruskal-Wallis pairwise comparisons identified significant differences in Goslon scores between Center 5 (mean 2.58, SD 0.732) and the other four centers (1 mean=3.84, SD=0.649; 2 mean=3.23, SD=0.912; 3 mean=3.68, SD=0.552; 4 mean=3.23, SD=0.687). The distribution of scores was different also with more Center 5 patients in the better categories of 1 and 2 and more of Center 1 and 3 patients in the poorer categories of 4 and 5. In addition, half of Center 1’s 26 patients were treated with GPP and half without. There was no significant difference in the Goslon ratings of these subsets (+GPP mean=3.91; -GPP mean=3.75). However, there was a significant difference between Center 1 and Center 4 which used NAM but without GPP.

CONCLUSIONS: The center with the most favorable dental arch relationships used no additional procedures in its infant management protocol than lip and palate repair. The inclusion of additional procedures (NAM, IO, GPP primary bone grafting) did not result in any benefit to dental arch relationships. However, a second center also without use of any additional procedures had similarly poorer outcomes emphasizing the need to examine other protocol features to understand differences in dental arch relationships. Finally, although inclusion of GPP in Center 1’s protocol was associated with ratings similar to those seen after primary bone grafting, there was no evidence that it negatively impacted Center 1’s mixed dentition dental arch relationships.

A NEW CONCEPT FOR CRANIOFACIAL REPAIR USING A CHEMOTACTIC SCAFFOLD
Reza Jarrahy (1), Akhighe Hokugyo (1), Andres Segovia (1), Anisa Buck (2), Andrew Li (2), Cameron Rezzadeh (1). (1) UCLA Ronald Reagan Medical Center, Los Angeles, CA, (2) UCLA, Los Angeles, CA
Contact Email: rjarrahy@mednet.ucla.edu

BACKGROUND & PURPOSE: Currently the gold standard for bone reconstruction involves autologous bone grafting, which creates significant donor site morbidity. Regenerative medicine approaches to these clinical problems aim to obviate the need for autologous bone grafting through the use of bioengineered constructs that combine stem cells, growth factors, and biocompatible vehicles. Human mesenchymal stem cells (hMSCs) and vascular endothelial growth factor (VEGF) have both shown promise for use in this context, the former due to their pluripotent capacity and the latter due to its osteoinductive and chemotactic properties. In this study we harness the regenerative potential of these cells and this growth factor to develop a “Smart Scaffold” for use in bone tissue engineering.
RESULTS: Significant group by time interactions emerged for PCC, KLPA2 and between groups (G1; G2), over time (baseline; 10 weeks; 20 weeks) using (KLPA2), probe word production accuracy (target generalization composite the secondary measures of Goldman-Fristoe Test of Articulation 2 raw scores received 10 weeks of PA after a 10 week wait period. Progress in treatment, match entering the opposite group. Children in group 1 (G1) received 10 weeks of intervention testing, children with CP (N=18) were matched on critical variables. As such, the study sought to address the following questions: 1. Compared to children with CP and SSD who receive 10 weeks of intervention maintain or PA lead to improved speech in 4 to 5-year-olds with CP and SSD? 2. Do children not receiving treatment, does a 10-week period of intervention using Phonological approach (PA) may be effective. To our knowledge, there are no studies examining the use of PA for the remediation of SSD in a group of preschool children with nonsyndromic CP through a waitlist control trial. In vivo chemotactic examination, DiR-tagged hMSCs were accumulated in the chemotactic scaffold. Successful bone regeneration was shown in the defect treated with “Smart Scaffold”. CONCLUSIONS: These observations suggest that incorporation of VEGF may play a vital role in the design of clinically relevant bone graft substitutes, or chemotactic scaffolds attracting pluripotent cells to the site of reconstruction.

EFFECTIVENESS OF A PHONOLOGICAL INTERVENTION FOR PRESCHOOL CHILDREN WITH NONSYNDROMIC CLEFT PALATE

Heather Thompson (1), Sean Redmond (1), Bruce Smith (1). (1) University of Utah, Salt Lake City, UT

BACKGROUND & PURPOSE: Children with nonsyndromic cleft palate (CP) are at risk for delays in speech [e.g., Bzoch, 1965; Chapman & Hardin, 1992, Chapman, 1993] and language [see Hardin-Jones & Chapman, 2011, Peterson-Falzone et al, 2001]. Approximately 73% require speech intervention following surgery [Hardin-Jones & Jones, 2005]. Phonological disorders occur in young children with CP [Chapman, 1993]. While early studies employed a motor approach to treat speech sound disorders (SSD) of children with CP [e.g., Chism et al, 1969], given the nature of children’s speech errors, a phonological approach (PA) may be effective. To our knowledge, there are no studies examining the use of PA for the remediation of SSD in a group of preschool children with nonsyndromic CP through a waitlist control trial. As such, the study sought to address the following questions: 1. How does PA benefit children to children not receiving treatment, does a 10-week period of intervention using PA lead to improved speech in 4 to 5-year-olds with CP and SSD? 2. Do children with CP and SSD who receive 10 weeks of intervention maintain or improve their speech skills once treatment is withdrawn? 3. Does PA lead to improved quality of life?

METHODS & DESCRIPTION: Children with nonsyndromic CP were recruited from craniofacial teams (2011-2014). After completing eligibility and pre-treatment testing, children with CP (N=18) were matched on critical variables. One child from each pair was randomly assigned to a group, with his/her match entering the opposite group. Children in group 1 (G1) received 10 weeks of PA followed by 10 weeks without treatment. Children in group 2 (G2) received 10 weeks of PA after a 10 week wait period. Progress in treatment, measured by the primary outcome of Percent Consonants Correct (PCC), and the secondary measures of Goldman-Fristoe Test of Articulation 2 raw scores (GFTA2), Khan-Lewis Phonological Analysis – Second Edition standard scores (KLPA2), probe word production accuracy (target generalization composite score; TGC), intelligibility (INT), and quality of life (PedsQL), were compared between groups (G1; G2), over time (baseline; 10 weeks; 20 weeks) using repeated measures analysis of variance (RMANOVA).

RESULTS: Significant group by time interactions emerged for PCC, KLPA2 and TGC using RMANOVA, indicating that PA leads to improved speech for children with CP. Significant pre- to post-treatment improvements in PCC, KLPA2, INT and TGC and decreases in GFTA2 were noted. Depending on the speech variable assessed, children exhibited maintenance or improvement from 10- to 20-weeks as noted by t-tests. While no pre- to post-treatment changes in PedsQL total scores emerged, when compared to normative data, participants exhibited lower social functioning prior to intervention with non-significant differences post-treatment.

CONCLUSIONS: Results show PA can be used to remediate the SSD and leads to improved social functioning of children with nonsyndromic CP. These results contribute to body of intervention research for children with CP.
Specifically, these practices relate to the routine use of high-dose radiation imaging, long-term antibiotics, blood transfusions, and intensive postoperative surveillance. For the first time, stratifying by surgery experience revealed significant differences in clinical practice.

A SYSTEMATIC REVIEW OF THE EVIDENCE FOR NEUROTOXICITY ASSOCIATED WITH EARLY CHILDHOOD EXPOSURE TO ANESTHESIA

Donald Laub, Jr. (1), Molly Rideout (2), Robert Williams (3), (1) University of Vermont College of Medicine, Colchester, VT, (2) University of Vermont College of Medicine, Burlington, VT, (3) University of Vermont College of Medicine, Burlington, VT

Contact Email: dlaub@uvm.edu

BACKGROUND & PURPOSE: Children undergo millions of surgical, diagnostic, and therapeutic procedures each year using anesthesia that has become safe and effective. However, numerous animal studies clearly show significant cognitive deficiency, and pathologic changes including dendritic cell damage and neural apoptosis associated with anesthetic administration during periods of rapid brain growth. Human research suggests that administration of routine general anesthesia with surgery in an otherwise healthy child may be associated with later developmental, cognitive, or behavioral deficits.

METHODS & DESCRIPTION: Publications were identified by the PubMed search (pediatric OR neonat* OR child*) AND anesth* AND (learning OR academic OR development*), from 1990, limited to full text, English language, human and child. The citations from this search were evaluated: commentary, editorial, review and irrelevant articles were excluded. Two reviewers independently assessed publications.

RESULTS: There were 1731 publications yielded by this search. After exclusions there were 14 studies; all were retrospective. With respect to developmental, cognitive, or behavioral outcome: 3 showed no adverse effect, 9 showed an adverse effect, and 2 showed an uncertain effect. Of the 9 studies showing an adverse effect, 3 showed it after only a single exposure, 3 only with multiple exposures, and 3 did not specify.

CONCLUSIONS: It appears that there is an association between the administration of general anesthetic agents during early critical phases of neural development and later neurologic deficit. It has been recommended “until the risk of neurocognitive injury is understood, pediatric surgery specialties, in conjunction with anesthesiologists and pediatricians, should identify surgical procedures that can be delayed until older ages without incurring additional risk.” There two multi-center, prospective trials underway addressing this question: the Pediatric Anesthesia & Neurodevelopment Assessment (PANDA) and the General and Spinal (GAS) trial; their conclusions are likely years away. The ongoing multi-center, prospective Timing of Primary Surgery for Cleft Palate (TOPS) trial also may give insight to this issue. Cleft surgeons routinely treat children with cleft palate using protocols calling for surgery in infancy, before critical periods of language acquisition, necessary to affect the best speech outcomes. Craniofacial surgeons perform surgery on patients during infancy and early childhood, and also refer children for perioperative diagnostic imaging procedures that routinely require general anesthesia. Surgeons need to consider whether effective care could be delivered to these children with fewer or delayed studies. Although it is uncertain whether surgical treatment protocols can be appropriately adjusted, cleft and craniofacial surgeons will have to assess the potential and unavoidable risk of the anesthetic along with the benefits of these procedures.

IMPLEMENTING A DYNAMIC CLINIC MANAGEMENT SYSTEM AND ITS EFFECT ON CRANIOFACIAL TEAM CLINIC EFFICIENCY AND PATIENT EXPERIENCE

James Seaward (1), Rami Hallac (2), Alex Kane (1). (1) University of Texas Southwestern Medical Center, Dallas, TX, (2) Analytical Imaging and Modeling Center, Children’s Medical Center, Dallas, TX

Contact Email: James.Seaward@utsouthwestern.edu

BACKGROUND & PURPOSE: During Craniofacial Team Clinic, multiple patients are seen by multiple providers, allowing varied and complex needs to be addressed in one visit. Our Craniofacial Team Clinic uses a model whereby patients occupy rooms, which providers move between. This allows contemporaneous communication between providers, who pass one another regularly during clinic, and allows for simultaneous consultations with multiple providers, when appropriate, without disrupting patient flow. During our clinics, 30 patients are each seen by 10 providers in a half-day.

METHODS & DESCRIPTION: In order to run our clinic efficiently, we designed and implemented a computerized dynamic clinic management system. This consists of a database of information about each patient’s journey through clinic, with relevant information displayed efficiently for each individual provider. Information can be updated simultaneously in multiple locations benefiting all providers, clinic staff and patients.

RESULTS: Team providers benefit as they can view rapidly and clearly which patients need to be seen and who is available to be seen. Benefits for our nursing and administrative staff are that they can instantly determine into which rooms arriving patients can be placed, which patients are waiting, and when patients have seen all necessary providers and can go home; and they can update the patient status from whichever location is most convenient. Patients benefit both because they have information in their room about which providers they are due to see during their clinic visit and who remains to be seen, and because waiting time between providers has reduced, resulting in an overall shorter visit. In addition, our clinic management system allows our Craniofacial Team Coordinator to review timing information to optimize clinic scheduling and planning, and to reduce the waiting time for patients between providers.

CONCLUSIONS: The authors will present this clinic management system, designed and written by Craniofacial surgeons, and demonstrate how implementing our dynamic clinic management system has improved not only the efficiency of clinic but has also improved the patient experience. This system runs on regular hospital PC's with no additional equipment required, and we intend to make this system available to other Craniofacial units.

INTERDISCIPLINARY CLEFT/CRAINOFAICAL TEAM CARE: AN OASIS OR A MIRAGE?

Jeffrey Marsh (1), Marilyn Jones (2), Kathleen Kapp-Simon (3), Ross Long, Jr (4), Jerry Moon (5), John Riski (6). (1) Kids Plastic Surgery, St. Louis, MO, (2) Rady Children’s Hospital, San Diego, CA, (3) Shriner’s Hospitals for Children - Chicago, Chicago, IL, (4) Lancaster Cleft Palate Clinic, Lancaster, PA, (5) University of Iowa, Iowa City, IA, (6) Children’s Healthcare of Atlanta, Atlanta, GA

Contact Email: jeffrey.marsh@mercy.net

BACKGROUND & PURPOSE: This presentation will explore whether the concept of interdisciplinary team care for cleft and other craniofacial deformed has been fully realized from its inception in the 1920s to current practice. The goal of this presentation is to assist the current and the upcoming generation of craniofacial providers in formulating plans for the optimization of resource utilization and patient/family outcome.

METHODS & DESCRIPTION: The presenters represent the major disciplines of cleft/craniofacial teams (dentistry, education/research, genetics, psychology, speech, surgery). Each participant has a minimum of 3 decades of personal experience creating, managing and participating in cleft/craniofacial team care as well as significant leadership roles in ACPA, CPF and the CPCJ. The successes, failures and challenges of interdisciplinary team care will be presented and discussed.

Z-SCORES AND MIXED EFFECT MODELING: A PRACTICAL METHOD FOR ANALYZING GROWTH PATTERNS IN CHILDREN WITH CRANIOFACIAL DISORDERS

Sandra Tomlinson-Hansen (1), Patrick Gerety (2), Brianne Mitchell (1), Jordan Swanson (1), Jesse Taylor (3). (1) The Children’s Hospital of Philadelphia, Philadelphia, PA, (2) Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, (3) The Children’s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA

Contact Email: sandratomlinsonhansen@gmail.com

BACKGROUND & PURPOSE: While standard growth data is often frequently and accurately recorded, retrospective growth data has remained notoriously difficult to analyze and interpret. As a result, patterns of overall growth in children with cleft and cranial differences have not been well delineated in the literature. We have designed a growth model and novel method to accurately analyze retrospective growth data.

METHODS & DESCRIPTION: Growth measurements were abstracted from the electronic medical record, and all data input into STATA. A growth model was fit, and length, weight, and head circumference were adjusted for age and sex according to World Health Organization’s (WHO) standards and converted to z-scores. Z-score modeling accounts for expected growth rate changes in childhood. Therefore, a child without any medical or nutrition issues would be expected to have an unchanged z-score throughout childhood. Changes in z-score indicate deviation from normal growth patterns and point to potential external causes. A clinical time point of interest was selected (such as date of surgery, or removal of a device). Three time periods were identified: birth, pre-event of interest and post-event. To accommodate the complex nature of this data, a growth model based on mixed effects regression analysis was fit to standardized anthropometric data, with time as a discrete variable and a
random effect at the patient level. For each measure, contrasts were calculated between each of the three time periods.

RESULTS: This model has been successfully applied to our patients with cleft palate and Pierre Robin Sequence undergoing surgical intervention. For a specific disorder, growth patterns in different populations of patients have been successfully described and compared between time periods (e.g. pre- and post-repair) and across patient populations (e.g. cleft palate patients who are adopted internationally versus their domestic counterparts).

CONCLUSIONS: Procedures and defects in children – particularly involving the face and neck – have the potential to affect nutrition and subsequent growth and development. Being able to quantitatively characterize the nature of these changes using existing data, in relationship to conditions, procedures, or care practices would be of tremendous value in a wide variety of clinical situations, and have the potential to change recommendations about care. Our model enables researchers and clinicians to do just this in a practical manner.

THE USE OF A NOVEL MOBILE TECHNOLOGY PLATFORM TO FACILITATE INSTANTANEOUS HIPAA-SENSITIVE PERIOPERATIVE MESSAGING IMPROVES PATIENT CARE AND PHYSICIAN-PATIENT COMMUNICATION

Kameron Rezadah (1), Akshige Hokugo (1), Andres Segovia (1), Reza Jarrahy (1). (1) UCLA Ronald Reagan Medical Center, Los Angeles, CA

Contact Email: kamrez@gmail.com

BACKGROUND & PURPOSE: Mobile device technology has revolutionized interprofessional communications, but the application to the physician-patient relationship remains limited due to concerns over patient confidentiality and the security of digital information. Nevertheless, there is a continued focus on improving communication between doctors and patients in all fields of medicine to improve patient care. In this study, we introduce a novel communications platform that has been designed to share information with surgical patients and their friends and family in real time within a secure HIPAA-compliant format.

METHODS & DESCRIPTION: 351 consecutive patients scheduled to undergo elective surgical procedures were offered registration to a secure, web-based service designed to distribute perioperative updates to a group of recipients designated by each patient via Short Message Service (SMS) and/or email. Messages were created by attending surgeons and delivered instantaneously through the web-based platform. In the postoperative period, patients and their designated message recipients completed a survey designed to assess their experience with the messaging system. Survey results were statistically analyzed to determine overall satisfaction with the service.

RESULTS: 313 patients enrolled in the study. On average, patients selected a total of 3.5 recipients to receive perioperative updates. A total of 1,195 electronic messages were generated for distribution to designated recipients during the study period and delivered to recipients located around the world. There were no documented errors or failures in message delivery. Satisfaction surveys were completed by 190 users for a response rate of 73%. Respondents identified themselves as either patients (n=48, 25.5%), family/friends (n=120, 63.8%), or healthcare providers (n=15, 12%). Satisfaction with the service was high: 94.2% of users “enjoyed this software” and 92.5% would “recommend their loved ones to sign up for this service.” Ninety percent of patients who completed the survey reported “an improved hospital experience” and 94.2% of family/friends “felt more connected to their loved ones during surgery.”

CONCLUSIONS: Digital communications platforms can facilitate the transfer of immediate HIPAA-compliant data to patients and their designees. Such systems can greatly improve the level of communication between physicians, patients, and patients’ support networks. We have observed high levels of satisfaction using such a system from healthcare providers, patients, and their loved ones.

METHODS & DESCRIPTION: In addition to actually observing the infant feed, the cleft feeding specialist must obtain an accurate feeding history (FH) to evaluate the infant’s current intake in order to make appropriate feeding recommendations. Historically a pen and paper three day diet history has been used to obtain one of the best records of intake. This involves the P/C to both record feedings in real time, and then to actually bring the record back to the clinician. It is not infrequent that the P/C either does not complete the record in real time, or forgets to bring the record to the clinic visit. The prevalence of use of smart phones in the current generation of parents aged 18 to 34 years old is 64% to 81%. Smartphones are a part of their daily lives. Smartphone apps may be perceived by P/C as much more user friendly than a pen and paper form. Although there are a plethora of apps related to health care and specific disease management, market research shows that there are no currently available Android or iOS apps specifically for P/C to address tracking feedings for infants with clefts. Writers have criticized some health apps because they were not developed by health care providers. This initiative is a collaborative effort of a cleft feeding specialist and the developer to create an app for Android smartphones to both track feedings of infants with clefts (specifically addressing cleft specific feeding issues), as well as providing feeding related education in a non-intimidating user friendly fashion. Cleft specific feeding issues include time of feeding, volume taken, amount of time to complete feeding, breastmilk or formula and caloric content used, frequency of burping, type of bottle and nipple used, occurrence of emesis and nasal regurgitation. The P/C can then provide detailed accurate data to their clinician/feeding specialist via this app. During this presentation, the app will be described and visual examples of the app will be provided.

Disclosure: Michael Marciel is the owner of Ocean Vector Design, and has developed 2 health care apps in the past. 1 app was free, and with the other app, made less than approximately $25.00. The app referred to in this abstract is completely free for anyone to download.

"FACE IT WITH FRIENDS": AN EVENT FOR TEENS WITH A HISTORY OF CLEFT LIP AND PALATE

Margaret Wilson (1), Shyla Miller (2), Sarah Woodhouse (2), (1) Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, (2) Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

Contact Email: margaret.wilson@cchmc.org

BACKGROUND & PURPOSE: There is limited information for teens and young adults with a history of cleft lip and palate regarding surgical decisions, psychosocial issues and genetic involvement. Teens and their families affected by a cleft may not have had the opportunity to meet or interact with another to share their experiences. Therefore, a “Face it with Friends” event was developed to unite and educate adolescents with history of cleft lip and/or palate (CL/P) and their families. The main goals of the four hour event were to provide the participants with opportunities to: 1) learn more about the genetics of clefts and facial development, 2) learn about future medical and surgical options, 3) discuss the unique psychosocial issues that have affected them and their families, 4) develop a network of peers with similar backgrounds and experiences, and 5) learn from parents and young adults who have overcome the challenges of growing up with CL/P.

METHODS & DESCRIPTION: A list of adolescents and young adults, ages 12-20 years with a history of CL/P, was generated from our craniofacial team’s database. Participants were contacted through mailings, phone calls, e-mail, or in person at clinic visits. Speakers included representatives from plastic surgery, genetics, psychology, and speech pathology. Topics, such as jaw surgery, facial development, genetics, and psychosocial issues were presented and discussed. Community involvement was solicited. Make-up artists from a local department store volunteered to provide information about skin care and make-up tips. A local photographer volunteered to take pictures of participants. In addition, a local bookstore donated copies of the book “Wonder” for each participant. A panel of teens and young adults as well as some of their parents concluded the event by discussing their personal experiences. Local media was invited and scheduled to document portions of the event.

RESULTS: There were 18 participants in 2009, 22 participants in 2010 and 40 participants in 2014. Positive feedback was obtained in the surveys that were collected at the end of each event and taken into consideration when planning the next event.

CONCLUSIONS: “Face it with Friends” is a valuable opportunity for patients and families to network with each other and informally interact with the medical team members who often treat them. It is also a chance to provide additional education regarding cleft lip and palate during adolescence.
BACKGROUND & PURPOSE: Understanding outcomes following an international cleft mission, particularly parental perceptions of outcomes, is important but often difficult. However, the increasing use of mobile telephones even among rural, disadvantaged families may enable this patient group to be better evaluated. This project aimed to assess patient satisfaction, cost, social impact, and surgical outcomes in patients operated on during Changing Children’s Lives, Inc.’s 2013 surgical mission to Udon Thani, Thailand.

RESULTS: 56 patients with cleft lip and/or palate underwent surgery: 31 (55%) underwent primarily lip repair, 15 (27%) underwent primary palatoplasty, and 10 (18%) underwent palate or lip revision. Mean age was 12.1 ± 12.4 years. Thirty patients (54%) were reachable by telephone. All volunteered to participate in the survey. The mean total out of pocket cost for families (travel, food, and lodging, but no medical fees) was USD103.85±112.44. Nine (10q26 11q26.3). Similar deletions have been reported in children with craniosynostosis, hypotonia, congenital heart anomalies, and/or cryptorchidism. Parents were glad that an underlying cause was recognized for advocacy of therapies and future family planning.

CONCLUSIONS: These illustrative cases demonstrate the use of developmental testing for appropriate genetic referrals and the identification of deletions by CMA.

IDENTIFYING GENETIC REFERRALS THROUGH DEVELOPMENTAL SCREENING IN SAGITTAL CRANIOSYNOSTOSIS: CASE EXAMPLES

Alexis Johns (1), Pedro Sanchez-Lara (1). (1) Children’s Hospital Los Angeles, Los Angeles, CA

BACKGROUND & PURPOSE: Studies of the longitudinal development of children with isolated single suture craniosynostosis have found mild delays compared to healthy peers and recommend close developmental monitoring. However, children with sagittal craniosynostosis show a pattern of performing relatively higher than other single suture craniosynostoses and a large proportion of these children are in the average range. This pattern and clinical impressions may contribute to some inconsistency in medical providers ensuring developmental testing is completed. Thus, it is possible that deficits are not recognized leading to a lack of intervention and the delay of genetic consultation. We provide case examples of children with sagittal craniosynostosis identified as having delays through developmental testing and referred to genetics with positive chromosome microarrays (CMA).

METHODS & DESCRIPTION: We review cases highlighting the usefulness of developmental testing along with genetic referrals and the role of molecular diagnostics.

RESULTS: In the first case, a Latina female with sagittal craniosynostosis and no other significant medical findings was tested preoperatively at age six months with the Bayley Scales of Infant and Toddler Development – Third Edition (Bayley-III) in Spanish. Her scores were in the far below to below average ranges and referrals for early intervention and genetic consultation were made; however, due to family social concerns, they did not follow up with genetics. Her brother was born two years later with sagittal craniosynostosis and his preoperative Bayley-III at age three months showed results in the well below to below average range. A genetics evaluation was completed and a chromosome microarray analysis identified a 584kb deletion on the long arm of chromosome 16 encompassing eight protein coding genes. Familial testing was completed and the same deletion was identified in two paternal half siblings with sagittal craniosynostosis and their father with macrocephaly. All deletion carriers had mild-moderate intellectual disability. This case deletion emphasizes the importance of follow up testing and the need to facilitate team care recommendations. In another case, a Chinese male with sagittal craniosynostosis was referred to genetics after preoperative Bayley-III with a Mandarin interpreter at age three months showed scores in the well below to average ranges. Parents had concerns for lower tone, but were reassured by outside providers that sagittal synostosis is isolated. CMA results identified a large 13.8Mb terminal genomic deletion of chromosome 10 (10q26 11q26.3). Similar deletions have been reported in children with craniosynostosis, hypotonia, congenital heart anomalies, and/or cryptorchidism. Parents were glad that an underlying cause was recognized for advocacy of therapies and future family planning.

CONCLUSIONS: These illustrative cases demonstrate the use of developmental testing for appropriate genetic referrals and the identification of deletions by CMA.
OPTIMAL LANDMARKS FOR THE DIAGNOSIS OF METOTIC CRANIOSYNOSTOSIS: A COMPUTATIONAL APPROACH

Benjamin Wood (1), Carlos Mendoza (2), Nabile Saifdar (1), Marius Linguraru (2). (1) Children's National Medical Center, Washington, DC; (2) St. Louis University School of Medicine, St. Louis, MO. Contact Email: bwood@childrensnational.org

BACKGROUND & PURPOSE: The diagnosis of metopic synostosis is primarily made based on cranial shape given the normal closure of the metopic suture in early infancy. The largely subjective nature of that approach introduces a degree of controversy into the management algorithm for this condition. The purpose of this study was to create a simple, reproducible radiographic method to quantify forehead shape and distinguish normal variation from abnormal trigonocephaly.

METHODS & DESCRIPTION: CT scans were acquired from the image repository system at our institution for 93 control patients (mean age 4.2 ± 3.3 months) and 18 patients (mean age 6.2 ± 3.3 months) with a diagnosis of metopic synostosis. A statistical shape model was constructed, and deformation fields were calculated for each of the metopic synostosis patients. Optimal and simplified inter-frontal angles (IFA) were defined based on the three points of maximum average deformation. Statistical analysis was performed to assess the accuracy and reliability of the diagnostic procedure.

RESULTS: The optimal IFA was found to be significantly different between the index (116.5° ± 5.8°, min 106.8°, max 126.6°) and control (136.7° ± 6.2°, min 123.8°, max 169.3°) groups (p<0.001). Receiver operating characteristic (ROC) analysis resulted in an area under the curve (AUC) of 0.998 and 0.996 for the optimal and simplified IFA, respectively. There was no significant difference between the optimal and simplified IFA in identifying index cases (p=0.86).

CONCLUSIONS: A systematic method for quantifying the severity of frontal narrowing based on cranial shape analysis may help reduce the over-diagnosis of metopic synostosis. The proposed method uses a simple planar angle measurement on CT imaging that is reproducible and accurate.

ANATOMICAL STUDY OF THE EFFECTS OF FIVE SURGICAL MANEUVERS ON NASAL MUCOSA MOVEMENT

Dennis Nguyen (1), Kamlesh Patel (2), Gary Skolnick (3), Albert Woo (3). (1) Washington University School of Medicine, St. Louis, MO; (2) Washington University in St. Louis, St. Louis, MO; (3) Washington University in St. Louis School of Medicine, Saint Louis, MO. Contact Email: nguyennd@wudosis.wustl.edu

BACKGROUND & PURPOSE: A biomechanical study by Mendonca et al. from all our fellows. This, according to them, is a good method to gain ample experience in anesthesia induction and a lot of the pitfalls for that particular case can be discussed without wasting anesthesia time.

METHODS & DESCRIPTION: For a student, the learning curve in understanding cleft lip marking is often long. One more factor that makes it even more challenging to understand is an array of techniques that are used at the same institution. Understanding the exact technique and applying it to a particular case is most of the time very tough. Innovative teaching methods and tools are required to facilitate this process. The most useful tool in this situation would be the one that is easily available, should be cost effective and most importantly should be handy so that it can be used at any time. We propose the use of electronic tablets for teaching cleft lip markings.

METHODS & DESCRIPTION: A commercially available tablet is used by the authors, with built in camera for high quality photos an electronic pen for writing on the screen. The following procedure is used: A good quality picture of the patient is captured with the tablet, either during screening or in the preoperative ward. The picture can be zoomed to the appropriate size and in the editing mode, the fellow is asked to do digital markings on the image before the surgery. Attending surgeons guide the fellows, revising and clarifying when needed. The markings can easily be erased and both the size of the marker and the eraser can be controlled to achieve maximum precision. Different techniques and variations can thus also be discussed for each patient. Also, the undo function can be used to reverse any faulty marks or lines. The fellow can thus by trial and error understand the markings of the particular case that he/she will be assisting/ performing the next day. Furthermore, the edited image can at any time be saved for the fellow’s record. Once the fellow has successfully marked all the points, he is gradually asked to do markings on the patients. Most teaching will thus be done before anesthesia induction and a lot of the pitfalls for that particular case can be discussed without wasting anesthesia time.

RESULTS: There has been a very positive response on this type of teaching tool from all our fellows. This, according to them, is a good method to gain ample experience in anesthesia induction and a lot of the pitfalls for that particular case can be discussed without wasting anesthesia time.
confidence before they start practicing on the patients. Furthermore, this method can be used for examinations and a helpful tool when evaluating the progress of fellow residents.

CONCLUSIONS: We conclude that the rapidly developing technology in the field of electronic tablets can very successfully be used to teach markings of cleft lip. The advantage of this tool for teaching is that it is affordable, easily available and reproducible.

27 PRIMARY ABBE FLAP FOR MIDLLINE AND SEVERE BILATERAL CLEFT LIP DEFORMITY: NEW TRENDS ON AN OLD CONCEPT

Jordan Steinberg (1), Colin Brady (1), Fernando Burrstein (1). (1) Children’s Healthcare of Atlanta, Atlanta, GA

Contact Email: jordan.steinberg@icloud.com

BACKGROUND & PURPOSE: The Abbe flap is commonly employed for secondary correction of a tight upper lip following initial bilateral cleft lip repair. Supple tissue from the lower lip is transferred to the upper lip, enabling the excision of scar as well as lengthening of the columella. Although primary Abbe flap use for cases of severe of prolabial tissue deficiency was first described over 50 years ago, the technique has not been emphasized in modern reports. We present our experience using primary Abbe flaps not only for cases of bilateral cleft lip with severe prolabial agenesia, but also for midline clefts with a completely absent prolabium.

METHODS & DESCRIPTION: The records of 8 patients who underwent primary Abbe flaps were reviewed for indications, operative details, and major/minor complications. Flaps were designed in a “W” fashion and with variable thickness distally to allow columellar reconstruction following rotation and inset.

RESULTS: From 2010-2014, 6 patients with midline cleft lips and 2 with severe complete bilateral cleft lips were treated with a primary Abbe flap. Mean age was 9.6 months. All patients with midline clefts had an associated diagnosis of holoprosencephaly, while 1 of 2 bilateral cleft lip patients had an associated syndrome. Flap division was performed at a mean of 3.6 weeks. Operative time averaged 78 min. Patients were followed for a mean of 12 months. One patient with holoprosencephaly expired for reasons independent of surgery. No major surgery-related complications were otherwise noted. No feeding or airway complications including reintubation were experienced and maxillomandibular fixation was not required. No flaps were lost to vascular compromise. Two of 8 patients have thus far been scheduled for lip revisions.

CONCLUSIONS: The Abbe flap may be safely and advantageously employed for the primary repair of midline and severe bilateral cleft lip. The recruitment of new tissue for lip and nasal reconstruction may prevent the stigma often associated with conventional repair of these defects as well as reduce the need for multiple revisional surgeries. This is significant given recent medical advances and longer life expectancies for children with such deformities.

28 COMPUTER SIMULATED NEONATAL DISTRACTION OSTEONECISIS

Sidney Eisig (1), Caitlyn Magraw (2), Michael Perrino (3), Austin Daly (4). (1) New York Presbyterian/ Columbia University, New York, NY, (2) UNC, Chapel Hill, NC, (3) Columbia University, NY-Presbyterian Hospital, NY, NY, (4) Columbia University, NY, NY

Contact Email: sb2002@columbia.edu

BACKGROUND & PURPOSE: The importance of imaging for craniofacial reconstruction has facilitated the development of computer-aided design (CAD) and computer-aided modeling (CAM) to produce precise 3D imaging. Integrating basic imaging techniques, such as CT scans with contemporary software allows the surgeon to analyze a detailed patient model preoperatively. In addition, the surgeon can also manipulate the model using computer-aided surgical simulation (CASS) software. The ability to perform 3D measurements and virtually reconstruct deformed or missing anatomy is exceptionally valuable. The benefits of CAD/CAM and CASS in preoperative planning include the construction of custom surgical instruments. The surgeon can design, based on patient specific measurements, necessary stereolithographic models, guide stents and occlusal splints. The ability to analyze and manipulate a 3D patient model and individualize surgical appliances transforms the surgical process. The application and success of CAD/CAM and CASS in craniofacial surgery has been well documented for orthognathic surgery but no study has addressed micrognathia in Robin sequence. In this study, seven cases of upper airway obstruction in the neonatal patient with Robin sequence were corrected with mandibular distraction osteogenesis utilizing CAD/CAM and CASS.

METHODS & DESCRIPTION: Seven neonatal patients with Robin sequence were assessed and determined to be appropriate candidates for mandibular distraction osteogenesis. Each patient underwent a CT-scan of the head and neck. The images were subsequently evaluated for treatment planning with a computer engineer at Medical Modeling using VSP® software. Simulated osteotomies in an inverted-L fashion were utilized to plan the optimal vector for distraction while allowing protection of the developing tooth buds and inferior alveolar nerve. Surgical guides were created for use with Zurich microdrisctor (KLS, Jacksonville, Fl) accounting for the planned osteotomies and screw positions. The CASS plan was then compared to the cephalometric outcome at distractor removal. All devices were pre-bent on stereolithographic models which demonstrated the planned screw hole position.

RESULTS: All patients had successful osteotomies and device placement as planned. All patients were either successfully decannulated or extubated and discharged home. Cephalometric overlays of the surgical plan with the final outcome were nearly identical.

CONCLUSIONS: Computer assisted surgical simulation improves the accuracy of preoperative planning as well as postoperative outcomes. Application of this technology provides advantages in predicting the osteotomy type and location, vector of distraction, placement of the distraction device, and length of distraction. This technology minimizes the risk of injuring adjacent structures and has been shown to be an accurate predictor of the final mandibular position. These benefits ensure a more predictable and safer surgical procedure and improve the probability of a successful outcome.

29 PANCRANIOSYNOSTOSIS FOLLOWING ENDOSCOPIC-ASSOCIATED STRIP CRANIECTOMY FOR SAGITTAL PANCRANIOSYNOSTOSIS IN THE SETTING OF POOR COMPLIANCE WITH FOLLOW-UP: A CASE REPORT

Isak Goodwin (1), Dana Johns (1), Barbuc Gociman (1), Faiiz Siddiqi (1). (1) University of Utah, Salt Lake City, UT

Contact Email: isak.goodwin@hsc.utah.edu

BACKGROUND & PURPOSE: Orthotic helmet therapy is an accepted treatment of positional plagiocephaly, as well as of postoperative cranial molding after endoscopic strip craniectomy. Complications of helmet therapy have been described, including the development of pressure sores, local ethanol erythema (related to build up of cleaning fluids at the helmet–skin interface), skin infection, subcutaneous abscess, unsatisfying fit affecting adherence to therapy, and failed correction of head deformity. Our report documents postoperative development of pansynostosis in a patient who initially presented with an uncomplicated single-suture sagittal synostosis treated with endoscopic-assisted strip craniectomy and postoperative molding helmet therapy. We discuss the potential contributions of poor adherence to helmenting and the natural progression of synostotic disease in the development of postoperative pansynostosis.

METHODS & DESCRIPTION: The authors present a case of inadvertently prolonged orthotic helmet therapy after endoscopic strip craniectomy for isolated sagittal synostosis, with an unexpected complication.

RESULTS: The patient developed pansynostosis, requiring a subsequent open total cranial vault reconstruction for correction for this secondary deformity.

CONCLUSIONS: There is limited craniofacial literature on the complications of helmet therapy, and controversy regarding the effects of inadequate orthotic helmet therapy. Although it remains unclear whether postoperative development of pansynostosis is the result of prolonged helmenting or the consequence of progressive synostotic disease, this report highlights the importance of parent education and judicious scheduled follow-up for the avoidance of potential helmet therapy complications.

30 DOES A REPORTED CONFLICT OF INTEREST AFFECT STUDY OUTCOMES IN HELMET THERAPY FOR POSITIONAL PLAGIOCEPHALY?

Vincent Noori (1), John van Aalst (2). (1) University of North Carolina at Chapel Hill, Chapel Hill, NC, (2) Cincinnati Children’s Hospital, Cincinnati, OH

Contact Email: vince.noori@gmail.com

BACKGROUND & PURPOSE: A conflict of interest (COI) is any circumstance in which a primary interest, such as patient health, is compromised by a secondary interest, such as financial gain. The “back to sleep” campaign initiated in 1994 has significantly decreased the incidence of SIDS and simultaneously increased the incidence of deformational plagiocephaly. In parallel to this development, there has been a dramatic increase in the marketing for molding helmets to treat positional plagiocephaly. Many families with children who have deformational plagiocephaly are aware of helmet therapy as a treatment option long before consulting with physicians, adding to the pressure to treat with helmets. Given the increase in demand for helmets, and the growing market for helmets, we recognize a potential COI in favor of treating children with positional plagiocephaly using helmets. In this abstract, we examine whether a stated COI influences the outcomes of helmet studies. We hypothesized that helmet studies performed by physicians
ultimately tested. Because of the family's knowledge of the diagnosis, they
syndrome was highly myopic with astigmatism, as was his older sister when
children were accurately diagnosed. Our original patient with Stickler
reported to be as high as 50-70% in genetically confirmed type I subgroup.
Patients with Stickler syndrome and their siblings benefit from a
mild cases, the clinical diagnosis can be challenging. Molecular analysis should
always consulted given the concern for potential ocular issues and should also
include evaluation of siblings as well, given the risk for ophthalmologic
complications if the family is unaware.
METHODS & DESCRIPTION: It is important to establish a diagnosis of Stickler
syndrome as early as possible for appropriate counseling and treatment. In
mild cases, the clinical diagnosis can be challenging. Molecular analysis should
be offered to those patients with a high suspicion and/or family history. Patients with Stickler syndrome and their siblings benefit from a
multidisciplinary approach, including pediatric ophthalmology, given the high
risk of visual issues. Stickler syndrome is the most common cause of
retinogonathal, glaucomatosis and cleft palate. Pediatric Ophthalmology is
always consulted given the concern for potential ocular issues and should also
include evaluation of siblings as well, given the risk for ophthalmologic
complications if the family is unaware.
METHODS & DESCRIPTION: We reviewed all studies in Pubmed written in
English that examined the use of helmets to treat deformational plagiocephaly in
infants (n = 45 studies). Studies were categorized as retrospective or
prospective; duration of treatment was identified, as well as length of follow
up, which was divided into greater than, or less than a year, or unspecified;
whether treatment was beneficial or not; the specialties of the treating
physicians, and the presence of a stated COI.
RESULTS: A vast majority of studies (93%) supported the beneficial outcome of
helmet treatment. Among these studies, 64% were prospective studies; 36%
were retrospective. The authors of seventeen studies declared no COI and
demonstrated a benefit in helmet treatment; eight studies declared a COI and
demonstrated benefits with helmet treatment. Twenty studies did not specify
a COI (44%); seventeen of these studies demonstrated a benefit with helmet
treatment while three demonstrated no benefit. In general, Plastic Surgeons
were more supportive of helmet treatment than Neurosurgeons.
CONCLUSIONS: Based on our review, most studies examining helmet
treatment for positional plagiocephaly demonstrated a benefit with the
treatment. Based on our findings, a declared COI did not appear, in and of
itself, to increase the likelihood of a favorable outcome with helmet
treatment. What is more concerning in this data set is the number of studies
where no COI is declared.
with a stated COI would lead to outcomes in favor of helmet treatment.
METHODS & DESCRIPTION: Until recently, Stickler syndrome was a clinical
diagnosis. Now combining clinical and molecular analysis, we can provide
more accurate assessment of patients as well as their siblings, therefore
identifying potential risk for ocular issues. We present a case of a patient born
with Pierre Robin sequence, subsequently diagnosed with Stickler syndrome.
His older sister was not seen as a patient initially, but was later diagnosed with
Stickler Syndrome after presenting with a retinal hole sustained after being
bumped in the head, while playing with her younger brother. Stickler syndrome
occurs in 1/10,000 newborns, often with clinical findings that include
retrognathia, glaucomatosis and cleft palate. Pediatric Ophthalmology is
always consulted given the concern for potential ocular issues and should also
include evaluation of siblings as well, given the risk for ophthalmologic
complications if the family is unaware.
METHODS & PURPOSE: Until recently, Stickler syndrome was a clinical
diagnosis. Now combining clinical and molecular analysis, we can provide
more accurate assessment of patients as well as their siblings, therefore
identifying potential risk for ocular issues. We present a case of a patient born
with Pierre Robin sequence, subsequently diagnosed with Stickler syndrome.
His older sister was not seen as a patient initially, but was later diagnosed with
Stickler Syndrome after presenting with a retinal hole sustained after being
bumped in the head, while playing with her younger brother. Stickler syndrome
occurs in 1/10,000 newborns, often with clinical findings that include
retrognathia, glaucomatosis and cleft palate. Pediatric Ophthalmology is
always consulted given the concern for potential ocular issues and should also
include evaluation of siblings as well, given the risk for ophthalmologic
complications if the family is unaware.
METHODS & PURPOSE: Master's level students in speech-language
pathology are expected to obtain clinical hours in a wide variety of clinical
sites, across the lifespan and across a large number of disorder areas. Clinical
practica focused on specific disorder areas, like cleft and craniofacial
disorders, are limited, in addition to being highly competitive. Because of the
evidence that approximately half of speech-language pathologists do not feel
competent in treating children with errors related to repaired cleft palate
(Bedwinek et al., 2010), providing opportunities for graduate students to
receive clinical training in this area is needed.
METHODS & PURPOSE: This presentation will focus on ways to apply the
key therapy guidelines of cleft lip and palate related speech disorders when
treating Spanish speakers though discussion of material adaptations and
resources. Participants will gain an understanding of useful resources and
adapted materials for development of goal, treatment plan, and delivery of
services to Spanish speakers with craniofacial conditions.
METHODS & DESCRIPTION: This presentation will focus on treatment planning
and service delivery of Spanish speakers with cleft palate and craniofacial
conditions. Video clips will be used to highlight useful resources and adapted
materials when treating Spanish speakers with cleft palate and craniofacial
conditions. Background information on the cultural and linguistic differences
of the patient population will be presented and share their perspectives on
interaction and sharing of resources between the treating clinician and team SLP will
be stressed.
RESULTS: Adapted therapy materials and other resources have been found to be
useful in treating and educating Spanish speaking children and families
with cleft palate and craniofacial conditions.
CONCLUSIONS: Through sharing of resources and discussion of cases, participants will gain an understanding for applying and adapting therapy
materials when treating Spanish speaker with cleft palate and craniofacial
conditions.
COMPREHENSIVE REVIEW AND SUMMARY OF LAWS AND REGULATIONS RELEVANT TO CHILDREN WITH OROFACIAL CLEFTS
Margot Neufeld (1), Tanya Wanchek (2), Cynthia Cassell (3) and craniofacial disorders. Royalty - Mandulak receives a quarterly royalty for institutions related to teaching or clinical service delivery in the area of cleft pathology programs.

Replication of this course/clinic could easily occur in other speech-language settings. Since successful outcomes impact a patient's communication, addressing these barriers, a comprehensive review of federal and state regulations relevant to children with OFC was conducted. The purpose of this presentation is to familiarize attendees with the laws and regulations that cover children with OFC among the 50 states and to provide feedback from the audience about their knowledge or experience in feeding issues in this population. This Eye Opener Session is intended to provide SLPs and other professionals working with infants and families with knowledge about the different specialty bottles available and how to find the right match between baby, bottle and parent. METHODS & DESCRIPTION: This presentation will include case presentations and handouts with specially bottles. Content will address evaluation techniques to determine readiness for oral feeding trials covering the emergence of oral reflexes in the premature infant, respiratory issues and motor patterns that interfere with efficient feeding, assessing latch and suck, and swallow safety. A review of current specialty bottles available and how they will work include discussion of which bottles provide the most efficient intake for different anatomies. Tips for adapting bottles will be discussed as well as positioning techniques to facilitate latch and transfer of milk while ensuring swallow safety. Addressing questions of breast feeding and supplemental nursing systems will also be covered. Ideas for promoting adequate oral intake in the immediate post-op period and addressing questions about introduction of solids in children with cleft palate will be shared. Case studies will address solutions to common feeding problems as well as special issues with PRR, trachomalacia, and reflux. The session will end with a discussion of how to develop measurable goals for therapy.

FEEDING PROBLEMS AND SOLUTIONS IN BABIES WITH CLEFT PALATE
Kathleen Borowitz (1). (1) University of Virginia Health System, Charlottesville, VA
Contact Email: kcb8t@virginia.edu

BACKGROUND & PURPOSE: Infants with cleft lip and palate must feed with a special bottle and nipple system. Finding the right feeding method for an individual baby can mean the difference between G-tube placement and oral feeding. Adequate weight gain early in life is especially important for these children as failure to thrive could result in delayed surgical repair. Many care providers, even some who are part of a cleft care team, do not have the knowledge or experience in feeding issues in this population. This Eye Opener Session is intended to provide SLPs and other professionals working with infants and families with knowledge about the different specialty bottles available and how to find the right match between baby, bottle and parent. METHODS & DESCRIPTION: This presentation will include case presentations and handouts with specially bottles. Content will address evaluation techniques to determine readiness for oral feeding trials covering the emergence of oral reflexes in the premature infant, respiratory issues and motor patterns that interfere with efficient feeding, assessing latch and suck, and swallow safety. A review of current specialty bottles available and how they will work include discussion of which bottles provide the most efficient intake for different anatomies. Tips for adapting bottles will be discussed as well as positioning techniques to facilitate latch and transfer of milk while ensuring swallow safety. Addressing questions of breast feeding and supplemental nursing systems will also be covered. Ideas for promoting adequate oral intake in the immediate post-op period and addressing questions about introduction of solids in children with cleft palate will be shared. Case studies will address solutions to common feeding problems as well as special issues with PRR, trachomalacia, and reflux. The session will end with a discussion of how to develop measurable goals for therapy.

ANATOMY OF THE UNILATERAL CLEFT LIP NASAL DEFORMITY
Kamlesh Patel (1). (1) Washington University in St. Louis, St. Louis, MO
Contact Email: patelk@wudosis.wustl.edu

BACKGROUND & PURPOSE: Cleft lip nasal deformity is not a malformation, but rather a distortion caused by the labial cleft. The stigmata of the cleft lip nasal deformity includes: deviation of the tip and caudal septum to the non-cleft side, dislocated lower lateral cartilage, obtuse angle between middle and lateral crura, posterior-laterally displaced alar base, and short columella on the cleft side. The aim is to describe six components of the cleft nasal deformity, comparing normal anatomy to cleft anatomy.

METHODS & DESCRIPTION: This session will be in a lecture format, presenting anatomic studies related to normal and cleft nasal anatomy. The talk will focus on the following components of the nose: • Nasal bones • Septum • Piriform • Alar base/Nasal sill • Upper lateral cartilages • Lower lateral cartilages Based on anatomic principles, surgical approaches to correct each of the individual components of the cleft nasal deformity will be shown. Outcome studies of various maneuvers used in primary correction of the cleft nasal deformity will be reviewed.

CONCLUSIONS: Primary correction of the cartilaginous and soft tissue components of the cleft nasal deformity can be performed safely with improvement in long-term aesthetic outcomes.

MAKING THE MOST OF PRENATAL COUNSELING OPPORTUNITIES
Karla Haynes (1), Irene Klecha (1). (1) Children’s Hospital Los Angeles, Los Angeles, CA
Contact Email: khaynes@chla.usc.edu

BACKGROUND & PURPOSE: Many providers on Craniofacial Teams will be formally or informally, possibly without ever having been trained to provide this type of sensitive counseling. It is optimal for this counseling to be provided in conjunction with a perinatology team to confirm the cleft diagnosis and to provide education to decrease fear and anxiety, however this
type of team approach is not always possible. This talk will prepare Team members to provide basic counseling to families seeking information about the diagnosis of cleft lip and/or palate in a variety of settings.

METHODS & DESCRIPTION: The goal of this session is to promote competence and confidence in basic prenatal cleft counseling. Several new scenarios will be presented and recommendations will be made regarding the purpose, content, and structure of a prenatal counseling session. Suggestions will be made regarding handouts and visual aids to facilitate teaching during the counseling session. Information will also be given regarding common psychosocial concerns of families expecting an infant with a cleft.

PREPARING YOUR PATIENTS FOR JAW SURGERY – A MULTIDISCIPLINARY APPROACH TO A PATIENT CENTERED JAW SURGERY WORKSHOP

Carolynne Garrison Howard (1), Laura Takeuchi (1), Patricia Glick (3), Davinder Singh (1), Edward Joganic (1), Deborah Leach (1), Stephen Beals (1), (1) Barrow Cleft And Craniofacial Center, Phoenix, AZ

Contact Email: Carolynne.GarrisonHoward@dignityhealth.org

BACKGROUND: The challenge for the cleft palate reconstructive surgeon is to successfully repair every type and anatomical variation of cleft palate. Presently, the vast majority of surgeons use single pattern repairs which are highly inflexible and may only work well on certain anatomic presentations. Many surgeons revert to older, more growth restricting techniques on complete or wide clefts. This leads to variability of success based on the width or type of the cleft.

PURPOSE: To improve the outcome of cleft palate reconstruction with the use of buccal flaps in both primary and secondary cleft palate repairs in terms of patient satisfaction.

METHODS & DESCRIPTION: The buccal myomucosal flap has proven that it has great applicability in cleft palate repair. This will be demonstrated through video, slide, didactic presentation and audience interaction. The senior presenter will relate his experiences with over 1,000 buccal flaps surgeries used in various cleft palate applications.

IMPACT OF A CLEFT AND CRANIOFACIAL CENTER ON A HEALTH CARE SYSTEM

Navid Pournahreri (1), Craig Anderson (2), David Blankfield (2), Aaron Kearney (3), Derrick Wan (4), Gregory Lakin (1), (1) University Hospitals, Cleveland, OH, (2) Rainbow Babies and Children's Hospital, Cleveland, OH, (3) Case Western Reserve University School of Medicine, Cleveland, OH, (4) Stanford University Medical Center, Palo Alto, CA

Contact Email: navid.pournahreri@uhhospitals.org

BACKGROUND & PURPOSE: Crouzon syndrome is characterized by craniosynostosis (premature cranial suture fusion) and craniofacial anomalies and arises from activating mutations within the fibroblast growth factor receptor IIc splice variant (Fgfr2c) that disrupt normal ERK-MAPK activity. ERK-MAPK hyperactivation has been shown to result in craniosynostosis. The docking protein Frs2α mediates FGRF2c signaling to positively regulate ERK-MAPK activation through the tyrosine phosphatase Shp2 and the adapter protein Grb2. The objective of this study was to determine the role of Frs2α-mediated Shp2- and Grb2-induced ERK-MAPK activation in craniosynostosis and craniofacial development in an animal model of Crouzon syndrome.

METHODS & DESCRIPTION: Crouzon syndrome-like mice (Fgfr2cC342Y/+), were crossed with mice deficient in the two Shp2- or four Grb2-specific tyrosine phosphorylation sites, to produce Fgfr2cC342Y/+; Frs2αΔShp2/+ or Fgfr2cC342Y/+; Frs2αΔGrb2/ΔGrb2 mice. Mouse skull morphology and sutures were analyzed grossly, histologically, and by micro-Computed Tomography. P1 – P3 pup cranial sutures were microdissected and analyzed for ERK protein activation and whole calvaria were cultured and analyzed for alkaline phosphatase (ALP) activity. All comparisons were made to wild-type (WT) and Frs2αΔShp2/+ or Frs2αΔGrb2 control mice. A Analysis of Variance test used to compare multiple groups. An observed P value ≤0.05 was considered statistically significant.

RESULTS: Fgfr2cC342Y/+ mice demonstrated coronal suture morphology with severe craniofacial dysmorphia. Fgfr2cC342Y/+; Frs2αΔShp2/+ mice presented with patent coronal sutures and craniofacial morphology similar to WT mice (n=8/11/group; p<0.01). Fgfr2cC342Y/+ mice demonstrated hyperphosphorylation of ERK protein that was reduced to WT levels in Fgfr2cC342Y/+; Frs2αΔShp2/+ mice (n=3-4/group; p<0.05). Fgfr2cC342Y/+; Frs2αΔGrb2/ΔGrb2 mice demonstrated craniofacial morphology similar to WT mice in a subset of measurements (n=6-8/group; p<0.05); however, only 1/3 of Fgfr2cC342Y/+; Frs2αΔGrb2/ΔGrb2 presented with patent sutures. Coronal suture ERK-MAPK activity was restored in Fgfr2cC342Y/+; Frs2αΔGrb2/ΔGrb2 mice. Osteoblast ALP activity was reduced in Fgfr2cC342Y/+; Frs2αΔGrb2/ΔGrb2 mice compared to Fgfr2cC342Y/+ mice (n=3-7/group; p<0.05).

MOUNTAIN OF SHP2 AND GRB2 ACTIVATION PREVENTS ABDERRANT FGFR2 SIGNALING-INDUCED CRANIOSYNOSTOSIS THROUGH AN ERK-MAPK-DEPENDENT PATHWAY

Miles Pfaff (1), Li Li (2), Eswarakumar Veraragavan (2), (1) UCLA, Los Angeles, CA, (2) Yale University, New Haven, CT

Contact Email: mpfaff@mednet.ucla.edu

BACKGROUND & PURPOSE: A cleft and craniofacial center (CFC) requires many resources such as ancillary services, ICD-9 codes, CPT codes, RVUs, line item charges, payor type, reimbursement, direct and indirect costs. RESULTS: 62 patients (61.3% male, 38.7% female) were seen in CFC over one day in January (17.7%), two days in February (40.3%), and two days in March (41.9%) of 2011. 29.0% were new and 71.0% were return patients. Ages ranged from 2.7 to 19.5 years (mean 11.4±4.9). Travel distance ranged from 2.1 to 143 miles (mean 27.7±26.3) not including one patient from overseas. Patients had cleft lip and/or palate (CLP) (71.0%), cleft/facial bone anomaly (21.0%), CLP and skull/facial bone anomaly (4.8%), or other congenital craniofacial disorder (3.2%). Syndromes seen included Pierre Robin, Stickler, 22q11, Freeman-Sheldon, LADD, Downs, Treacher-Collins, pituitary dwarfism, and ectodermal dysplasia. Over a two-year period, the 62 patients generated a total of 618 health system encounters (mean of 10.0 and maximum of 56 per patient), 19 inpatient stays, 68 hospital days (mean stay of 3.6 days), and 112 procedures (mean of 1.8 and maximum of 10 per patient). Visits involved 32 different physician specialties (51.3% plastic surgery, 22.4% pediatrics and subspecialties, 12.9% otolaryngology, 13.2% other) and 7 non-physician specialists (256 speech therapy encounters, 71 audiology, 13 physical and occupational therapy, 8 sleep medicine, 8 voice lab, 2 genetics, 2 nutrition). The most common payor type for all encounters was Medicaid (60.2% compared to 35.8% managed care, 2.1% self-pay, 1.6% state disability, and 0.3% Medicare). Only 20.2% of outpatients visits were profitable, whereas 63.2% of inpatient stays were profitable. The gross profit margin for all visits to the health system was profitable.

CONCLUSIONS: Our study shows that a comprehensive CFC generates positive financial impact on a health care system in terms of downstream revenue from hospital stays, procedures, and encounters across nearly 40 different specialties. We believe that this impact justifies allocation of resources to establish or run the CFC. In return, this study suggests that future potential growth of the CFC will lead to additional increased productivity for the health care system.
CONCLUSIONS: Genetic uncoupling of FRS2a and Shp2 prevents cranio-
synostosis and completely restores normal craniofacial growth in Fgr2C342Y/
+ mice while uncoupling of FRS2a and Grb2 partially rescues the WT
phenotype. This is the first study to identify Shp2 and Grb2 as regulators of
craniosynostosis. This study highlights the therapeutic potential of these
proteins as targets for the treatment of craniosynostosis and other
skeletal disorders.

43 SPONTANEOUS FOREHEAD REMODELING AFTER POSTERIOR VAULT
RECONSTRUCTION IN SAGITTAL SYNOSTOSIS
Jose Gonzalez (1), Olivia Linden (1), Margaret Byrne (1), Petra Klinge (1),
Stephen Sullivan (1), Helena Taylor (1). (1) Alpert Medical School - Brown
University, Providence, RI
Contact Email: jose.gonzalez@brown.edu

BACKGROUND & PURPOSE: Surgeons advocate various methods to correct
scaphocephaly secondary to sagittal synostosis, but little quantitative data
exists to support one technique over another. One approach uses parietal and
posterior vault reconstruction, which relies on post surgical forehead
remodeling. The degree of indirect forehead remodeling following this
approach remains unknown. We utilize three dimensional (3D)
photogrammetry to measure the degree of spontaneous forehead remodeling
following posterior vault reconstructions. We hypothesize that 1) spontaneous
forehead remodeling occurs when the parietal and occipital cranium is
reconstructed 2) this remodeling results in a normal forehead shape.

METHODS & DESCRIPTION: After IRB approval we used 3D photogrammetry
to image children with sagittal synostosis undergoing posterior vault
reconstructions, and age-matched controls. We measured the frontal bossing
(FB) angle pre- and postoperatively, as well as in controls, and assessed
differences through Welch’s t-test. Root mean square deviation (RMSD) values
and color maps were generated to evaluate areas and degree of forehead
remodeling over time. One-way MANOVA analysis tested for statistical
differences in 3D forehead shape between groups. This analysis utilized a
comparison of 44 surface landmarks per forehead.

RESULTS: We collected data on seven subjects (mean follow-up age of 16
months), and five age-matched controls. Preoperatively, children with sagittal
synostosis had a mean FB angle of 109.5° ± 0.4° which decreased towards
over time after surgery. RMSD color mapping
indicated, does not result in a clinically significant regression of speech.

CONCLUSIONS: While there is concern that PPF takedown may degrade
speech, this study finds that surgical takedown of PPF, when clinically
indicated, does not result in a clinically significant regression of speech.

44 SPEECH OUTCOMES FOLLOWING CLINICALLY INDICATED POSTERIOR
PHARYNGEAL FLAP TAKEDOWN
Evan Katzel (1), Sanjay Naran (2), Zoe Macciaza (1), Liliana Camison (3),
Jesse Goldstein (4), Lorelei Grunwaldt (3), Matthew Ford (3), Joseph Losee (3).
(1) University of Pittsburgh Medical Center, Pittsburgh, PA, (2) University of
Pittsburgh, Pittsburgh, PA, (3) University of Pittsburgh Medical Center,
Pittsburgh, PA, (4) Children’s Hospital of Pittsburgh, Pittsburgh, PA
Contact Email: katzeleb@upmc.edu

BACKGROUND & PURPOSE: Velopharyngeal dysfunction (VPD) is a common
issue for children with repaired cleft palates, preventing proper production of
certain sounds, especially plosives and fricatives. Velum measurements are
useful to quantify velar closure but often cannot distinguish between
fricatives/fricatives and easier-to-achieve sounds, partly due to inter-subject
variability even among healthy subjects. Velum characteristics result from the
velar muscles, primarily the levator veli palatini (LVP), acting on the velum soft
tissue. Quantifying LVP behavior during speech could provide vital insight to
understanding VPD and which sounds are particularly challenging.

METHODS & DESCRIPTION: Six healthy adult subjects pronounced eight
English syllables: plosives (/b/,/k/), fricatives (/s/,/ʃ/,/n/,/s/,/n/),
and vowels (/æ/,/i/). Each was voiced three times during a real-time dynamic
MRI on Siemens Avanto 1.5T scanner with head and neck coils. One two-
dimensional oblique-coronal slice of the velum was acquired with image plane
close to lie along LVP length. Spatial resolution is 1.2*1.2mm2 with 8mm
slice thickness and temporal resolution of 18.2 frames-per-second. In each
image, lateral reference lines, marking pharyngeal port center and velum
midline, and superior-inferior reference lines, marking mid-sagittal and
pharyngeal port’s lateral edge, were manually placed. LVP muscle length for
each image was calculated from these reference lines. For each subject, LVP
lengths were normalized by resting length. We computed the numerical time
derivative of normalized LVP muscle length to calculate LVP muscle velocity
and determined the maximum shortening velocity for each syllable and subject.

RESULTS: Fricatives and plosives had statistically greater LVP muscle length
changes (14.7±13.5% and 15.3±6% respectively) than nasal consonants
(8.44±0.0%) with vowels in-between (12.1±4.7%). A similar trend held true for
maximum contraction velocity. Fricatives and plosives had the greatest
velocities while vowels and nasals had lower. While length change differences
were not significant between the plosives, maximum contraction velocity for
/b/ (.657±.307 lengths/sec) was statistically higher than for /k/ (.389±.195
lengths/sec).

45 LEVATOR VELI PALATINI MUSCLE LENGTH CHANGES AND
VELOCITIES VARY ACROSS SOUNDS
Catherine Pellow (1), Joshua Inouye (1), Kathleen Borowitz (2), Kent Lin (2),
Silvia Blemker (1). (1) University of Virginia, Charlottesville, VA, (2) University of
Virginia Health System, Charlottesville, VA
Contact Email: cmp5cg@virginia.edu

BACKGROUND & PURPOSE: Velopharyngeal dysfunction (VPD) is a
common issue for children with repaired cleft palates, preventing proper production of
certain sounds, especially plosives and fricatives. Velum measurements are
useful to quantify velar closure but often cannot distinguish between
fricatives/fricatives and easier-to-achieve sounds, partly due to inter-subject
variability even among healthy subjects. Velum characteristics result from the
velar muscles, primarily the levator veli palatini (LVP), acting on the velum soft
tissue. Quantifying LVP behavior during speech could provide vital insight to
understanding VPD and which sounds are particularly challenging.

METHODS & DESCRIPTION: Six healthy adult subjects pronounced eight
English syllables: plosives (/b/,/k/), fricatives (/s/,/ʃ/,/n/,/s/,/n/),
and vowels (/æ/,/i/). Each was voiced three times during a real-time dynamic
MRI on Siemens Avanto 1.5T scanner with head and neck coils. One two-
dimensional oblique-coronal slice of the velum was acquired with image plane
close to lie along LVP length. Spatial resolution is 1.2*1.2mm2 with 8mm
slice thickness and temporal resolution of 18.2 frames-per-second. In each
image, lateral reference lines, marking pharyngeal port center and velum
midline, and superior-inferior reference lines, marking mid-sagittal and
pharyngeal port’s lateral edge, were manually placed. LVP muscle length for
each image was calculated from these reference lines. For each subject, LVP
lengths were normalized by resting length. We computed the numerical time
derivative of normalized LVP muscle length to calculate LVP muscle velocity
and determined the maximum shortening velocity for each syllable and subject.

RESULTS: Fricatives and plosives had statistically greater LVP muscle length
changes (14.7±13.5% and 15.3±6% respectively) than nasal consonants
(8.44±0.0%) with vowels in-between (12.1±4.7%). A similar trend held true for
maximum contraction velocity. Fricatives and plosives had the greatest
velocities while vowels and nasals had lower. While length change differences
were not significant between the plosives, maximum contraction velocity for
/b/ (.657±.307 lengths/sec) was statistically higher than for /k/ (.389±.195
lengths/sec).
CONCLUSIONS: The results suggest that LVP length changes can distinguish between different types of sounds, and LVP shortening velocity has potential to differentiate between similar sounds. The length changes and high shortening velocities required to produce plosives and fricatives could affect LVP force-generating capacity and its ability to produce proper speech. Future research will elucidate how shortening velocity affects production of challenging sounds and how length change and velocity relationships hold in children with VP.

46 TIMING OF FURLOW PALATOPLASTY FOR PATIENTS WITH SUBMUCOUS CLEFT PALATE
Russell Ettinger (1), Theodore Kung (1), Natalie Wombacher (1), Haskell Newman (1), Steven Buchman (2), Steve Kasten (1), (1) University of Michigan, Ann Arbor, MI, (2) University of Michigan, Ann Arbor, MI
Contact Email: retting@med.umich.edu

BACKGROUND & PURPOSE: Submucous cleft palate (SMCP) is the most common form of cleft involving the posterior palate and can result in velar dysfunction and speech disturbances. While early surgical intervention is indicated for patients with true cleft palate, the indications for palatoplasty and timing of surgical intervention for patients with SMCP remain controversial. The purpose of this study is to evaluate the timing of Furlow palatoplasty for patients with SMCP and determine if early repair optimizes nasometric and qualitative speech assessment of hypernasal resonance following Furlow palatoplasty. Both early and late speech outcomes. Postoperative nasometry scores between groups were compared with Student t-test. Patients managed non-operatively were included for comparison of early and late speech outcomes.

RESULTS: The average age at time of surgery for the early operative group (n=9) was 2 years and 6 years for the late operative group (n=9). Primary diagnoses included patients with isolated SMCP, Van der Woude, VATER, 4p-syndrome, and velocardiofacial syndrome. The primary indication for surgery in both groups was hypernasality as determined by nasometry and perceptual speech assessment. Both groups demonstrated improvement in qualitative assessment of hypernasal resonance following Furlow palatoplasty. Both early and late groups demonstrated significant improvement in pre to postoperative nasometry from scores 7.4 to 2.3 SD from norm (p=0.01) and 6.1 to 4.1 (p=0.02) respectively. There was no difference in postoperative nasometry scores between early and late groups 2.3 and 4.1 (p=0.11).

CONCLUSIONS: Furlow palatoplasty significantly improves the degree of hypernasality in patients with SMCP based on pre and postoperative nasometry scores and on qualitative speech assessment of hypernasal resonance. There were no differences in speech resonance outcomes based on early compared to late operative intervention. Therefore, prefrontal early palatal repair is not required for optimal speech outcomes in children with SMCP and surgery should be considered on an individual basis based on the degree of speech dysfunction.

47 NORMATIVE VELOPHARYNGEAL DATA IN INFANTS: IMPLICATIONS FOR TREATMENT OF CLEFT PALATE
Graham Schenck (1), Jamie Perry (1), (1) East Carolina University, Greenville, NC
Contact Email: graham.c.schenck@gmail.com

BACKGROUND & PURPOSE: Identifying normative data related to VP muscles and structures may have clinical significance for infants born with cleft palate, especially as they relate to selection of surgical intervention and post-surgical outcomes. Research has demonstrated a relationship between abnormal levator muscle morphology and VPI in individuals with repaired cleft palate (Ha et al., 2007). These findings suggest that patients whose anatomy post-surgically are dissimilar to that of their normative counterparts are at risk for symptomatic VPI (i.e., hypernasal speech). However, studies have not documented what constitutes “normal” for the clinically relevant population—that is, the infant population. The purpose of this study is to examine an MRI database (N=29) related to normative VP musculature and structures, and provide a preliminary comparison to two selected patients with repaired cleft palate.

METHODS & DESCRIPTION: Twenty-nine healthy infants between 9-23 months of age (M = 15.2) with normal craniofacial and VP anatomy were recruited to participate in this study. Normative data was compared to two infants with repaired cleft palate between 13-15 months of age (M = 14). Quantitative comparisons of the sagittal and oblique coronal planes were completed utilizing Amira 5 visualization software. Variables of interest included: levator muscle, velum, and craniometric measures. Multiple independent, two-sample t-tests were used to examine gender differences between mean VP measures.

RESULTS: Females demonstrated significantly larger intravelar segments (2.9 mm) compared to males. No other craniofacial or VP structures demonstrated differences based on sex. The effect of head size was not significant between gender groups, and therefore was not included as a covariate in the analysis. The following normative values (mm) were observed for males and females: levator muscle length (28.9; 28.8), angle of origin (47.7; 47.1), velar length (22.6; 22.3), velar thickness (8.3; 7.9) and pharyngeal depth (34.9; 34.3). Infants with repaired cleft palate demonstrated increased overall levator muscle length, extravelar length, angle of origin, sella to basion distance, nasion-sella-basion angle, and decreased hard palate length, pharyngeal depth, and velar thickness compared to infants with normal VP anatomy.

CONCLUSIONS: The present study is the first to provide normative levator and VP anatomical data in healthy infants utilizing a large sample size. Infants with repaired cleft palate in the present study demonstrated differences in levator muscle integrity and position compared to infants with normal VP anatomy. Longitudinal studies should investigate the effects of abnormal levator palatine morphology and resonance in infants and children with repaired cleft palate to optimize surgical intervention and improve treatment outcomes.

48 RECURRENT OTITIS MEDIA WITH EFFUSION AS A PREDICTOR OF VELOPHARYNGEAL INSUFFICIENCY REQUIRING SECONDARY PALATE SURGERY
Contact Email: lauren.hanes@dal.ca

BACKGROUND & PURPOSE: Children with repaired cleft palate are known to experience secondary velopharyngeal insufficiency and recurrent otitis media with effusion. These complications can be attributed to persistent abnormalities in the levator and tensor veli palatini muscles, respectively, following primary palatoplasty. The purpose of this retrospective chart review was to identify whether recurrent otitis media with effusion requiring myringotomy tubes was predictive of the need for secondary speech surgery.

METHODS & DESCRIPTION: Institutional ethics approval was obtained for this case-control study. Records of all patients who underwent primary palatoplasty at our institution between 1990 and 2006 were reviewed to ensure adequate follow-up. Data extracted included age at primary palatoplasty, gender, Veau classification, surgeon, number of post-palatoplasty myringotomy tube procedures (0-1 sets vs. 2+ sets), hearing loss, syndrome diagnosis, fistula, and secondary speech surgery recommended or performed. Univariate analysis was used to identify covariates associated with increased odds of requiring secondary speech surgery. A multivariate regression model was constructed using a backwards stepwise approach, fitting covariates of gender, age at primary repair, Veau classification, diagnosed syndromes, surgeon, fistula, and number of myringotomy tubes.

RESULTS: A total of 249 patients met criteria for study inclusion. Of these patients, 44 (18%) had secondary speech surgery recommended or performed. While the majority of children required one set of myringotomy tubes following primary palatoplasty, a greater proportion of children who went on to have secondary speech surgery recommended or performed required two or more sets of myringotomy tubes compared to patients for whom secondary surgery was not recommended (59% vs. 37%, OR= 7.5, p=0.006). Univariate analysis revealed a significant association between Veau classification, presence of a syndrome, or two or more myringotomy tube procedures with secondary speech surgery. Adjusting for multiple covariates, children requiring two or more sets of myringotomy tubes were at 2.39 times more likely to require secondary speech surgery than patients who required one or fewer sets of myringotomy tubes (95% CI 1.49-6.74, p=0.015).

CONCLUSIONS: Adjusting for a variety of relevant variables, we demonstrate that recurrent otitis media with effusion requiring two or more myringotomy tube procedures is associated with a statistically significant increased risk of requiring secondary speech surgery. Using otitis media with effusion as a clinical predictor for secondary velopharyngeal insufficiency could allow for the early identification of “at-risk” patients in need of more intensive speech therapy and/or timely secondary speech surgery.
Abstracts

DIFFICULTIES IN TIMING PERCEPTION RELATED TO ABNORMAL BRAIN STRUCTURE IN CHILDREN AND ADOLESCENTS WITH NONSYNDROMIC CLEFT LIP AND/OR CLEFT PALATE

Tuan Truong (1), Amy Conrad (2), Vincent Magnotta (1), Peg Nopoulus (1)
(1) University of Iowa, Iowa City, IA, (2) The University of Iowa Hospitals and Clinics, Iowa City, IA
Contact Email: ian-devolder@uiowa.edu

BACKGROUND & PURPOSE: Abnormalities in brain structure have previously been reported in individuals with nonsyndromic cleft lip and/or cleft palate (NSCLP). These include reductions in the overall volume of the brain as well as more specific volumetric reductions of both the cerebellum and basal ganglia. These regions are important for a number of functions related to the motor system. One test commonly used to test motor function involves finger-tapping, and both the production and perception of specific timing intervals. Based on the brain structure abnormalities as well as previously reported motor dysfunction, we hypothesized that children and adolescents with NSCLP would show difficulties in a finger-tapping task. Furthermore, we anticipated these difficulties would directly correlate with abnormal brain structure in these individuals.

METHODS & DESCRIPTION: For the current study we examined 79 children and adolescents with NSCLP compared to 89 healthy controls (age range = 6-18). For all participants we administered a finger-tapping task with both a self-paced interval production component along with an interval perception component. For both components there was a long (730ms) and short (400ms) interval condition. In addition, all participants received an MRI scan to assess structural brain abnormalities.

RESULTS: Children and adolescents with NSCLP were found to have difficulties in both the production and perception portions of the finger-tapping task. For interval production the mean interval time did not differ between groups. However, there was a very significant difference in standard deviation of the interval time between groups (F = 15.59; p < .001). Individuals with NSCLP had significantly more variation in the length of the intervals produced, implying that they were not as efficient at internally generating and maintaining a constant rhythm. This difference in variability was only significant in the longer interval condition (730ms; a more difficult condition requiring additional cognitive control). Similarly, for the interval perception portion, children and adolescents with NSCLP showed lower perception accuracy compared to healthy controls. This difference was only significant in the longer interval time between groups (F = 15.59; p < .001). Individuals with NSCLP had more specific volumetric reductions of both the cerebellum and basal ganglia.

CONCLUSIONS: In conclusion, the results find that children with NSCLP show finger-tapping results. Furthermore, we anticipated these difficulties would directly correlate with abnormal brain structure in these individuals.

CONTINUING MEDICAL AND DENTAL NEEDS OF ADULTS WITH CLEFT LIP AND/OR PALATE: A NEEDS ASSESSMENT

Maureen Libby (1), Emet Schneiderman (2), Ann McCann (3), Alex Kane (4).
(1) Texas A&M University, Baylor College of Dentistry, San Antonio, TX, (2) Texas A&M University Baylor College of Dentistry, Dallas, TX, (3) Texas A&M University, Baylor College of Dentistry, Dallas, TX, (4) University of Texas Southwestern Medical Center, Dallas, TX
Contact Email: drmmaureenlibby@gmail.com

BACKGROUND & PURPOSE: Adults with cleft lip/palate (CLP) in the US may have difficulties addressing continuing health care needs once they age out of medical coverage. The extent of such ongoing dental and medical needs related to their clefts is currently unknown. The purpose of this exploratory study was to assess such needs by means of a regional and national survey. The survey asked about aspects of satisfaction, which procedures had been completed, what procedures were still desired, and how far they were willing to travel for care.

METHODS & DESCRIPTION: A novel online survey was developed based on prior quality of life surveys and the literature on adults with CLP. It was reviewed by experts in content & design, and approved by the Institutional Review Board. It was confidential, with the option to provide contact information. Initially a regional survey, it was extended nationally to achieve our target of 200 responses; this was done by using Cleffline’s national database of people with CLP who had sought information regarding adult care. Invitations were sent to all 69,127 email addresses at a major US university. 516 email invitations & 88 letters were sent to Cleffline contacts. The invitation was posted on 19 cleft-related web sites (American.org & Facebook Groups). Dozens of flyers were posted regionally. Allegiance software was used to build and host the 42 item survey. It included demographic questions, dichotomous and Likert scales, & open-ended questions about subjective life experiences. The survey was open from Sept. 18, 2013 to Jan. 15, 2014.

RESULTS: Of 204 completed surveys 27 were excluded because they were <18 years old, foreign or redundant; resulting in 177 usable responses. Of these, 51 were from the local region. Populous US states were best represented in the sample (CA, IL, NY, TX). The mean(SD) age was 37(14) years. Caucasians (77%), Hispanics (10%) & Asians (6%) were best represented. The sample was disproportionate female (67%). The proportions of cleft types were similar to national averages. The most common surgical procedures reported were lip repair (82%), palate repair (77%), & nose repair (53%). The 3 greatest areas of dissatisfaction (profile, 52%; occlusion, 50%; dental appearance, 50%) did not correspond with the 3 most-desired additional treatments/surgeries (for upper lip appearance, 43%; nose appearance, 41%; profile, 33%). The 3 greatest areas of satisfaction were swallowing, speech, & hearing (84-71%). In general, respondents were willing to travel significant distances to receive care (eg, 18% would go 100+ miles or “anywhere”).

CONCLUSIONS: Adults with CLP can be a very difficult population to identify. This sample may have been biased regarding gender, higher education level & internet access. At a national level, the survey identified highly motivated individuals seeking dental/medical/surgical care, but these individuals were not as efficient at internally generating and maintaining a constant rhythm. This difference in variability was only significant in the longer interval condition (730ms; a more difficult condition requiring additional cognitive control). Similarly, for the interval perception portion, children and adolescents with NSCLP showed lower perception accuracy compared to healthy controls. This difference was only significant in the longer interval time between groups (F = 15.59; p < .001). Individuals with NSCLP had more specific volumetric reductions of both the cerebellum and basal ganglia.

OUTSIDE, INSIDE: YOU DECIDE MIDDLE-SCHOOL PROGRAM FOSTERS ACCEPTANCE AND APPRECIATION OF THOSE WHO HAVE VISIBLE DIFFERENCES

Charlene Pell (1). (1) University of North Carolina-Greensboro, Greensboro, NC
Contact Email: charlene@facingforwardinc.org

BACKGROUND & PURPOSE: Children with visible difference often draw unwanted sympathy, patronizing remarks and behavior, intrusive stares,
teasing, and bullying. The Outside, Inside: You Decide program incorporates CASEL Social and Emotional Learning (SEL) programming in a middle-school intervention that inspires students to explore their personal beliefs about difference. Students learn the SEL competencies of self-awareness, relationship skills and responsible decision-making through acceptance and appreciation of those with visible differences. There is nothing similar to this program in the U.S., wherein a disfigured individual shares experiences and interacts with students in a structured program.

METHODS & DESCRIPTION: The 45-minute program was presented to six classes of middle-school students in 2001, 2004 and 2007. About 175 students participated in the program developed to incorporate preferred components of a disability awareness program that supports and promotes integration and inclusion. Dimensions participants emphasized in the program were self-awareness, self-management, social awareness and responsible decision making. Students listened to others, discussed, reflected, and expressed their impressions about others as well as themselves. Students responded to open-ended questions, and wrote about their impressions. A total of 125 students were asked to write their impressions about the workshop. Fifty were not asked to write about their impressions.

RESULTS: All students reported improved social emotional competencies of empathy, responsible behaviors and appreciation of diversity represented in people with visible differences. The most frequent comment was, “I will never stare at someone who looks different again, because I found out that it is not what they look like on the outside; it is what they are on the inside.”

CONCLUSIONS: Intense peer pressure will continue to motivate middle-school students to conform to the norms of the majority of individuals who value beauty above character and intellect. An intervention such as this program may influence middle-school students to become more accepting of themselves, each other, and those with visible differences. This program could be expanded to middle schools throughout America. It would be helpful to develop a tool to measure the short and long term effects of participating in the Outside,Inside: You Decide program.

PRESENTING CHARACTERISTICS AND MANAGEMENT OF SUBMUCOUS CLEFT PALATE: A SINGLE CENTER REVIEW SPANNING 16 YEARS

Solomon Obiri-Yeboah (1), Peter Ray (2), Nadia Abou Kheir (3), John Grant (2), Komfo Anokye Teaching Hospital, Kumasi, Ghana, (2) University of Alabama, Birmingham, Birmingham, AL, (3) University of Alabama at Birmingham, Birmingham, AL

Contact Email: obiribey@yahoo.com

BACKGROUND & PURPOSE: The diagnosis of submucous cleft palate may be subtle. Hence many patients present late after developing speech problems. This study seeks to determine the presenting characteristics and management of submucous cleft palate. Factors that may be predictive of a need for secondary surgery will be discussed.

METHODS & DESCRIPTION: An IRB approved retrospective review of our database from 1998 to 2014 was undertaken to identify patients with submucous cleft palate at a tertiary craniofacial care center. Gender, age at presentation, prior medical/surgical history, presence or absence of associated syndrome, and speech at presentation were analysed. The Somnerla classification scale was used to characterize physical findings noted at presentation and intraoperatively. Our center’s treatment protocol for submucous cleft palate consists of a trial of speech therapy followed, in the event of persistent VPI, by awake fiberoptic nasonasendoscopic evaluation of the velopharyngeal closure mechanism. Our primary operation is palatoplasty. Secondary surgery, if needed, is directed by nasendoscopic findings.

RESULTS: We identified seventy-six patients who presented to our center during the study period and were diagnosed with submucous cleft palate. Thirty-five (46.05%) were male and forty-one (53.95%) were female. The mean age at presentation was 5.31 years (range three weeks to 20.75 years). An associated syndrome was identified in 44.7% of these, the majority (88.23%) were diagnosed with DiGeorge syndrome. Twenty-two (28.95%) patients had adenoïdectomy with or without tonsillectomy prior to presentation. Of the seventy-six, only four have required secondary surgery. Thirty-nine (51.32%) had VPI corrected with palatoplasty alone. Of these, fourteen (35.90%) had an associated syndrome (11 DiGeorge, 1 Kabuki, 1 Proteus, 1 Goldenhar), while fourteen (35.90%) had no syndrome and eleven (28.20%) were undetermined. Thirty-three (42.20%) patients required more than one operation to achieve complete correction of VPI. Out of the thirty-three who had secondary surgery, eighteen (54.55%) had an associated syndrome of which seventeen (94.44%) had DiGeorge syndrome. Of the group requiring secondary speech surgery twenty-six (66.67%) were noted to have had adenoïdectomy prior to presentation. In fact all patients presenting with prior history of adenoïdectomy required additional surgical intervention.

CONCLUSIONS: Submucous cleft palate remains a challenging condition. Patients frequently present late, by which time they may have numerous compensatory speech errors. Primary palatoplasty to reposition the levator veli palatine muscle was effective therapy in half of the cases in this series. DiGeorge syndrome was frequently associated with submucous cleft palate but was not an absolute predictor of need for secondary surgery. Prior history of adenoïdectomy concomitant with a diagnosis of submucous cleft palate was a clear predictor of a need for secondary surgery.

TIMING OF PALATOPLASTY AND SPEECH OUTCOMES IN SUBMUCOUS CLEFT PALATE

Contact Email: jswans@gmail.com

BACKGROUND & PURPOSE: Because many children with submucous cleft palate (SMCP) are thought to be asymptomatic, surgical intervention is conventionally delayed until after the acquisition of speech if velopharyngeal insufficiency (VPI) is identified. However increasing evidence suggests that
interactive polling software, participants will rate speech samples. Audience speech articulation and resonance. This hands-on, "ears on" course aims to dysfunction, it is necessary to make valid and reliable perceptual ratings of

BACKGROUND & PURPOSE: In order to gather meaningful outcome Hospital for Children at Indiana University Health, Indianapolis, IN Houston, TX, (7) Nationwide Children's Hospital, Columbus, OH, (8) Riley Northridge, Northridge, CA, (4) University of Utah, Salt Lake City, UT, (5) Children's Specialty Healthcare, St. Paul, MN, (3) California State University at.

CONCLUSIONS: Among children with cleft palate, those with a diagnosis of SMCP undergo palatoplasty at a much older age. They have significantly higher performing surgery at a younger age may be associated with improved speech outcomes.

SMCP undergo palatoplasty at a much older age. They have significantly higher performing surgery at a younger age may be associated with improved speech outcomes.

RESULTS: Among 1,726 patients with cleft palate, 60 patients (3.4%) with SMCP underwent repair. Twelve (20%) patients were diagnosed with genetic syndromes and repaired at a mean age of 4.5 years; 48 nonsyndromic patients, underwent repair at a mean age of 5.3 years. Among the 10 syndromic patients with speech assessments after repair, only two (20%) were diagnosed with competent speech. 8 (80%) were diagnosed with borderline (40%) or incompetent (40%) speech, compared to a total of only 35% of syndromic patients with overt palatal clefts. (p < 0.05). Eleven patients (23%) underwent simultaneous Furlow palatoplasty and posterior pharyngeal flap with 45% achieving competent and 55% borderline speech, however this cohort showed high rates of postoperative obstructive sleep apnea. Among 12 nonsyndromic patients with long-term speech assessment, only four (33%) exhibited competent speech. Eight (67%) exhibited borderline or incompetent speech, compared to only 30% with overt palatal clefts (p < 0.05). Mean PWSS component scores were most abnormal for nasal emission (1.9) and articulation (1.1), whereas nasality was less abnormal (0.7). All four patients who underwent palatoplasty younger than 2.5 years of age obtained competent speech. No oronasal fistulas were identified among either syndromic or nonsyndromic SMCP patients.

CONCLUSIONS: Among children with cleft palate, those with a diagnosis of SMCP undergo palatoplasty at a much older age. They have significantly higher performing surgery at a younger age may be associated with improved speech outcomes.
GUIDELINES FOR ACADEMIC AND CLINICAL TRAINING FOR THE CLEFT TEAM SLP
Adriane Baylis (1), Kerry Mandulak (2), Mary O’Gara (3), Helen Sharp (4), (1) Nationwide Children’s Hospital, Columbus, OH, (2) Pacific University, Portland, OR, (3) Shriners Hospitals for Children; Northwestern University, Chicago, IL, (4) Western Michigan University, Kalamazoo, MI
Contact Email: adriane.baylis@nationwidechildrens.org

BACKGROUND & PURPOSE: This session will review and describe the multiple pathways that students, clinical fellows, and/or SLP clinicians who are new to the cleft palate team, may take as they embark on the process of obtaining clinical expertise in cleft/craniofacial anomalies and velopharyngeal dysfunction. It is well-recognized that there is a significant shortage of comprehensively-trained SLPs who are prepared to work with this specialized population. This course will be of interest to students, professors, SLPs, and team leaders interested in better understanding the required knowledge and skills for SLPs practicing in the cleft team setting.

METHODS & DESCRIPTION: The first part of the session will focus on the academic prerequisites consistent with ASHA’s Council for Clinical Certification in Audiology and Speech-Language Pathology (CCCF) accreditation standards. Standard learning objectives for graduate-level coursework that are specific to resonance and craniofacial anomalies will be discussed as well as how they can be achieved through a variety of flexible and innovative approaches to teaching and clinical practice. The second portion of this course will focus on clinical training pathways and clinical competencies for speech-language evaluation, treatment, and feeding for working with cleft/craniofacial populations. Suggested training opportunities including observation and fellowship experiences, mentored clinical practice, instrumented imaging training, as well as strategies for selecting quality continuing education resources to facilitate evidence-based practice will be discussed.

Disclosure: Salary - All presenters receive a salary from their affiliated institutions. Professional - Baylis: Council Member of ACPA, ASHA SIG 5 Coordinating Committee Member and Editor for Perspectives. Mandulak: Board of Directors for Smile Oregon.

PRACTICAL GUIDELINES FOR MANAGING PATIENTS WITH 22Q11.2 DELETION SYNDROME
Donna McDonald-McGinn (1), Oksana Jackson (2), Cynthia B. Solot (3), Meg Maguire (2), Anne Bassett (4), (1) The Children's Hospital of Philadelphia and Perelman School of Medicine of the University of PA, Philadelphia, PA, (2) The Children’s Hospital of Philadelphia, Philadelphia, PA, (3) Children’s Hospital of Philadelphia, Philadelphia, PA, (4) University of Toronto, Toronto, Ontario
Contact Email: mcginn@email.chop.edu

BACKGROUND & PURPOSE: Chromosome 22q11.2 deletions have been identified in the majority of patients with DiGeorge syndrome, velocardiofacial syndrome and congenital anomaly face syndrome; and in a subset of patients with Opitz G/BBB syndrome and Cayler Cardiacofacial syndrome. Although clinically undiagnosed, the 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion with an estimated prevalence of 1 in 1000 – 1 in 4000 live births. Furthermore, 22q11.2DS is the second most common cause of developmental delay and congenital heart disease after Down syndrome, and importantly, it is the most common cause of syndromic palatal anomalies.

METHODS & DESCRIPTION: Despite these facts and figures, broad recognition of the condition and systematic anticipatory guidance for clinical management remains limited. That said, the International 22q11.2 Deletion Syndrome Consortium established practical guidelines, developed in multiple stages, including three international consensus meetings where participants with broad expertise including 18 subspecialties representing >15 countries by the lead authors of this Study Session; published in the Journal of Pediatrics in 2011; and are currently being followed routinely by the multidisciplinary panel members. Therefore, their comprehensive experiences will be shared with the audience during this interactive workshop. Specific topics to be discussed will include: assessment and treatment of palatal abnormalities; speech and language challenges; intellectual and behavioral deficits; genetic counseling and psychosocial concerns; and a coordinated approach to medical and surgical care including important considerations prior to scheduling operative procedures across the periorative period. Finally, as these recommendations appear applicable to patients presenting to the Cleft palate Clinic with atypical nested 22q11.2 deletions, as well as, 22q11.2 duplications, these conditions will also be defined in the setting of this collaborative workshop.

Disclosure: Other (including honoraria) - I have been a speaker for Natera.

HOW TO TELL THE DIFFERENCE BETWEEN NON-ADHERENCE AND RISK: ASSESSING NEGLECT AND ABUSE IN THE CRANIOFACIAL POPULATION
Cassandra Aspinall (1), Ashley Peter (2), (1) Seattle Childrens Hospital, Seattle, WA, (2) Seattle Children’s Hospital, Seattle, WA
Contact Email: cassandra.aspinall@seattlechildrens.org

BACKGROUND & PURPOSE: Making decisions regarding the referral to child protection agencies when there is suspicion of child abuse and/or neglect is neither simple nor pleasant. Defining what constitutes a situation requiring a mandatory report versus one that represents a viable treatment choice or lifestyle that is safe for a child can be very difficult. Background on the identification of abuse and neglect will be reviewed along with general guidelines regarding the mandatory nature of the reporting of such observations. Case examples will then be used to demonstrate the initial identification of such situations, how they can be assessed along with describing the consequences of referral and non-referral to state agencies.

METHODS & DESCRIPTION: Presenters are experienced social work professionals who work with a large craniofacial center that serves a broad population of families. These social workers are the primary contact for review of cases involving child abuse and neglect. The tools used to track compliance, identify abuse and/or neglect will be reviewed in the context of the presentation of data collected by the social workers for their department about case components over time. Descriptions of effective team communication around such difficult cases will also be shared.

MAKING SENSE OF NASAL AIR EMISSION: CHARACTERISTICS OF OBLIGATORY AND LEARNED BEHAVIORS
Linda Vallino (1), David Zajac (2), (1) Nemours/A.I. duPont Hospital for Children, Wilmington, DE, (2) University of North Carolina at Chapel Hill, Chapel Hill, NC
Contact Email: vallino@asel.uel.edu

BACKGROUND & PURPOSE: Although nasal emission is one common symptom of cleft palate speech, there are many terms that have been used to describe it. Despite the fact that nasal emission is regularly encountered during the perceptual speech assessment, not all clinicians agree on the descriptive terms to identify it or its characteristic features. Clinicians are often in a position of determining if the nasal emission is obligatory or learned pattern of speech, the diagnostic significance of which is paramount to prescribing appropriate treatment. Acoustic studies (i.e., nasometry, spectrograms) have the capability to detect the differences in the articulatory behavior resulting in categories of nasal emission. Instrumentation is valuable in identifying the characteristics of obligatory and learned behaviors that might otherwise be missed during the perceptual evaluation, giving rise to a plausible causation. The purpose of this presentation is to provide basic science-based evidence to identify and classify types of nasal emission, demonstrate how acoustic studies (i.e., Nasometry recordings) can be used to differentiate between obligatory and learned behaviors, and the clinical implications for management.

METHODS & DESCRIPTION: A description of obligatory nasal emission and learned patterns of nasal emission will be presented. The various descriptive terms often resulting in confusion will be discussed. By way of audio recordings the audience will listen to samples of perceived nasal emission and identify their perceptual features, after which the value and limitations of perceptual judgments will be reviewed. The clinical merit of instrumentation in detailing the acoustic components of obligatory nasal emission and that which is considered learned behavior will be underscored. Among the several techniques available to the clinician and which will be discussed is the Nasometer’s recording capacity in which we will describe a method for analyzing the oral and nasal signal data to differentiate between the two classes on nasal emission. Limitations of low-tech devices such as the See-Scape and listening tubes will be highlighted.

ENDOSCOPIC CRANIOSYNOSTOSIS SURGERY
Albert Woo (1), Douglas Reber (2), Kamlesh Patel (3), Matthew Smyth (1), Scott Natale (4), (1) Washington University in St. Louis School of Medicine, Saint Louis, MO, (2) Hanger Clinic, Saint Louis, MO, (3) Washington University in St. Louis, St. Louis, MO, (4) Washington University School of Medicine, St Louis, MO
Contact Email: wooa@wustl.edu

BACKGROUND & PURPOSE: The management of craniosynostosis with endoscopic techniques is becoming widely accepted throughout the fields of plastic surgery and neurosurgery. The purpose of this study session is to offer a practical 90 minute course on the particulars of this technique.
METHODS & DESCRIPTION: Endoscopic treatment for craniosynostosis continues to increase in popularity among plastic surgeons and neurosurgeons who manage this disorder. This course will focus primarily on the practical aspects of endoscopic management and review technical considerations from a multidisciplinary perspective. We will focus specifically on 4 particular disciplines: plastic surgery, neurosurgery, nursing and orthotics. The long-term experience at a single institution with greater than 150 endoscopic cases will be reviewed and a discussion will be held regarding modifications to treatment protocols which have developed during this time. Presentations will include particular details regarding the use of specialty instruments, positioning and surgical technique. Specifics of management for different affected sutures will be highlighted as outcomes for individual sutures. A presentation focused on the particular details regarding helmet therapy will be given, and our orthotic helming experience and protocol will be outlined.

64 CLEFT ORTHOGNATHIC SURGERY

Derek Steinbacher (1), Lindsay Schuster (2), Anand Kumar (3). (1) Yale University, New Haven, CT, (2) Pittsburgh, Pittsburgh, PA, (3) The Johns Hopkins School of Medicine, Baltimore, MD

BACKGROUND & PURPOSE: Maxillary growth restriction is evident in a significant proportion of the repaired cleft palate population. In these cases, the resultant concave profile, poor upper lip and perioral form, anterior crosbite, and class III malocclusion require orthognathic surgery, at least a Le Fort I osteotomy, for correction. Orthognathic surgery in this setting is challenging given the altered vascularity and scar contracture, frequent necessity for concurrent bone grafting, possible fistulae closures, and impact on postoperative speech. It is incumbent upon any cleft team member, especially the orthodontist and surgeon, to appropriately diagnose, understand the presurgical orthodontic phase, effectively perform the surgical procedures, and understand orthognathic postoperative issues, including fistulae, pitfalls, post-surgical finishing, and additional procedures that may be required.

METHODS & DESCRIPTION: Goals: -Understand the surgical-orthodontic considerations in the cleft dento-facial deformity -Recognize the criteria to be deemed ready for orthognathic surgery in a cleft patient -Understand and implement the technical steps and modifications to perform cleft orthognathic surgery -Recognize and implement concurrent, adjunctive, or staged procedures in the setting of the cleft jaw deformity -Understand the impact and long-term effects of orthognathic surgery on the speech, respiratory, and masticatory functions, long-term -Understand and consider different treatment strategies, vantage points, and controversies in treating the cleft orthognathic patient -point-counterpoint and case based discussion will be carried out between the two surgeons with different strategies of treatment Description: This course will be given in a multidisciplinary fashion by practitioners involved in cleft orthodontics and surgery, and orthognathic surgery. The focus will be for the practicing orthodontist and surgeon who treats these patients from infancy through adulthood. We will devote 30 minutes to the orthodontic challenges, and setup necessary to adequately prepare these patients for surgery. We will devote 60 minutes to considerations in the unilateral deformity, bilateral deformity, with requisite attention to technical modifications, dealing with residual fistulae, segmental osteotomies, simultaneous bone grafting, management of existing posterior pharyngeal flap, and impact on sleep apnea and speech postoperatively. Additional emphasis will be placed on preoperative planning, including conventional model surgery, splint type and fabrications, virtual surgical planning, and speech and airway assessments. Final considerations of orthodontic finishing will be discussed as well.

65 THE FURLOW PALATOPLASTY: OPTIMIZING OUTCOMES THROUGH SURGICAL TECHNIQUE

Richard Kirschner (1). (1) Nationwide Children's Hospital, Columbus, OH

Contact Email: richard.kirschner@nationwidechildrens.org

BACKGROUND & PURPOSE: The Furlow double-opposing Z-palatoplasty may be used to achieve excellent results both in primary cleft palate repair and in secondary management of velopharyngeal dysfunction. This study session will provide a review of the detailed step-by-step surgical technique while providing tips on how to optimize surgical outcomes through patient selection and technical precision.

METHODS & DESCRIPTION: Using an interactive lecture format, the history and key concepts of the Furlow Z-palatoplasty will be reviewed. A video presentation will then illustrate the technique in a step-by-step fashion, providing attendees with an understanding of how to simply and successfully perform the operation in all cleft types while minimizing complications and optimizing surgical outcomes. Ample time will be devoted to audience participation, including a question and answer session at the end of the course.

66 SPEECH OUTCOME DATA: TECHNIQUES FOR DATA COLLECTION AND MANAGEMENT WITHIN THE CLINICAL SETTING

Kristina Wilson (1), Adriane Baylis (2), Angela Dixon (3), Judith Trost-Cardamone (4), Anna Thurnes (5), Kelly Cordero (6), Cindy Dobbelstein (7), Kathy Chapman (8). (1) Texas Children’s Hospital, Houston, TX, (2) Nationwide Children’s Hospital, Columbus, OH, (3) Riley Hospital for Children at Indiana University, Indianapolis, IN, (4) California State University at Northridge, Northridge, CA, (5) University of Minnesota, Minneapolis, MN, (6) Gillette Children’s Specialty Healthcare, St. Paul, MN, (7) Dalhousie University, Halifax, Nova Scotia, (8) University of Utah, Salt Lake City, UT

Contact Email: kwilson@texaschildrens.org

BACKGROUND & PURPOSE: Monitoring short-term and long-term speech outcomes is now recognized as a critical component of cleft team care, both to provide the best possible patient outcomes and to meet standards in place by professional organizations and funding sources. Clinicians conducting quality improvement investigations and/or research face numerous challenges related to time, equipment, and finding a reliable and valid process for data collection, analysis, and reporting of speech outcomes. This session shares practical methods for outcome data collection that have grown out of the American Speech Language Pathology Society’s experience. The target audience includes speech-language pathologists, surgeons, and any other professionals on cleft teams involved in quality improvement or research.

METHODS & DESCRIPTION: This session will provide an overview of the implementation of a systematic protocol to measure speech outcomes, whether it is for quality improvement or research. The development and refinement of protocols will be discussed, with the focus of the session on data collection, storage, and analysis. Audio and visual recording equipment and strategies for obtaining a quality recording will be illustrated. A range of technologies will be discussed, including web-based products and a database that increases efficiency while maintaining compliance with HIPAA and the IRB. Presenters will share their experiences of collecting speech outcome data within busy clinical settings. Audience discussion will be facilitated to share successes and challenges related to conducting speech outcome studies.

Disclosure: Salary - Authors receive salary from employment in hospitals and universities related to cleft and craniofacial care, connected to this session. Contracted Research - Americleft Speech Project is supported by a NICHD grant. All authors receive consulting financial support or are contracted for this excerpt Anna Thurnes. Professional - Authors are members of the Americleft Speech Group, ACPA, and ASHA SIG S. Adriane Baylis: ACPA Council Member; ASHA SIG 5 Coordinating Committee and Editor, SIG 5 Perspectives. Angela Dixon: Member of Professional Development Committee for ASHA SIG 5 Kristina Wilson: ACPA Chair of Archives Committee, member of ethics committee; ASHA Member of SIG 5 Coordinating Committee

67 MULTIDISCIPLINARY STRATEGIES TO AVOID AND TO TREAT SHORT AND LONG-TERM COMPLICATIONS OF NEONATAL MANDIBULAR DISTRACTION

Michael Lyaka (1), Jeffrey Goldstein (2). (1) Children’s Mercy Hospital, Kansas City, MO, (2) Children’s Mercy Hospital, Kansas City, MO.

Contact Email: mlypka@cmh.edu

BACKGROUND & PURPOSE: In many institutions, mandibular distraction has become the primary management of the neonate with a hypoplastic mandible and respiratory compromise. Yet distraction is associated with multiple short and long-term complications. Short-term perioperative complications include infection, distractor malfunction, malunion, partial or complete facial nerve injury, and failure leading to tracheostomy. Long-term complications include TMJ ankylosis, mandibular growth restriction, facial asymmetry, excessive neck scarring, and dental injuries. A multidisciplinary team approach is necessary to identify neonates who would benefit from this procedure, and who are more likely to fail. Specialists in the newborn period include the neonatologist, pulmonologist, radiologist, occupational therapist for feeding, geneticist, otolaryngologist, cleft team nurse coordinator, respiratory therapist, anesthesiologist, neonatal and operating room nurses, and the performing surgeon. This course will identify the necessary components of the workup to determine if distraction or another modality of treatment is the appropriate management for each individual neonate. Once distraction is decided upon, preoperative virtual surgical planning is usually undertaken, leading to necessary operations at the time of distraction. This course will emphasize the techniques of surgical planning including the use of three-dimensional medical modeling and virtual surgical planning as well as emphasizing the importance

Abstracts
of the vector of distraction. In addition, important technical steps of the procedure will be demonstrated. Longer-term complications also require a multidisciplinary approach. The timing and treatment of TMJ ankylosis will be presented, again emphasizing preoperative planning with three-dimensional medical models and virtual surgical planning, as well as the intra-operative use of distraction. Multidisciplinary management of secondary growth restrictions, malocclusions, and dental concerns will also be addressed in detail. Lastly, techniques and principles at the time of neonatal distraction to minimize these early and late complications will be presented.

METHODS & DESCRIPTION: The Study Session will be composed of lectures with time for audience interactions and questions.

SURGICAL MANAGEMENT OF VPD IN 22Q11.2 DELETION SYNDROME: MASTERS CLASS FOR THE SURGEON AND SLP
Adriane Baylis (1), Richard Kirschner (1). (1) Nationwide Children’s Hospital, Columbus, OH
Contact Email: adriane.baylis@nationwidechildrens.org

BACKGROUND & PURPOSE: It is well-recognized that management of velopharyngeal dysfunction (VPD) in children with 22q11.2 deletion syndrome (22q11DS) poses a challenge to surgeons and SLPs. Multiple reports in the literature confirm that even for clinicians with extensive cleft/craniofacial experience, speech surgery outcomes for 22q11DS are often less optimal than that of children with cleft palate or other causes of VPD. The nature of VPD in 22q11DS is complex, and thus treatment planning and surgical technique must be tailored to syndrome-specific and patient-specific factors to optimize outcome. The purpose of this masters’ class is to provide a comprehensive overview of the multifactorial nature of VPD in 22q11DS and for successful surgical-speech management.

METHODS & DESCRIPTION: This course will cover (1) presurgical speech assessment and guidelines for VP imaging, (2) preoperative medical evaluation and surgical planning for 22q11DS, (3) surgical techniques and modifications, (4) post-operative airway management, and (5) secondary surgery for velopharyngeal insufficiency in order to develop secondary surgery for velopharyngeal dysfunction. Nasopharyngoscopy can show the size, shape, location, and cause of a velopharyngeal opening. This information is valuable in determining the type of treatment or revision surgery that is needed for further correction. Although nasopharyngoscopy is an excellent diagnostic procedure, it can be challenging to perform on young children. The purpose of this session is to provide methods, tips, and tricks for obtaining a successful nasopharyngoscopy evaluation in children as young as age three, while causing minimal distress to the child (and the parent). In addition, this session will focus on interpretation and use the nasopharyngoscopy findings to determine the surgical procedure that has the best chance of success for each individual patient.

METHODS & DESCRIPTION: In this study session, the presenter will discuss the basic techniques of nasopharyngoscopy and also describe some tips and tricks to elicit necessary cooperation from very young children. The presenter will then explain how nasopharyngoscopy findings can be used to determine which surgical procedure has the best chance of success for each individual patient.

NASOALVEOLAR MOLDING AND COLUMELLA ELONGATION
Barry Grayson (1), Pradip Shetye (2), Court Cutting (2). (1) NYU Langone Medical Center, Dept. of Plastic Surgery, New York, NY, (2) NYU Langone Medical Center, Institute of Plastic and Reconstructive Surgery, New York, NY
Contact Email: barry.grayson@nyumc.org

BACKGROUND & PURPOSE: This in-depth instructional course addresses Nasoalveolar Molding and Columella Elongation from a clinical viewpoint. We present a greater than 20 years’ experience with Nasoalveolar Molding (NAM) and presurgical columella elongation in infants born with unilateral (UCLP) and bilateral (BCLP) clefts of the lip, alveolus and palate. The purpose of this study session is to describe the clinical method, review the current NAM literature and report our long-term clinical research findings. The target audience for this study session is the clinician who seeks a better understanding of the NAM technique and clarity regarding the controversy associated with presurgical infant orthopedics.

METHODS & DESCRIPTION: In this Study Session, we present NAM as a paradigm shift from the traditional methods and objectives of presurgical infant orthopedics. NAM addresses the deformity of nasal cartilages and deficiency of columella tissue in UCLP and BCLP. This technique utilizes wire and acrylic nasal stents, attached to the vestibular shield of an oral molding plate to mold the nasal alar cartilages into normal form and position during the neonatal period. The objective of presurgical NAM is to reduce severity of the nosolabial and alveolar deformity, enhancing conditions for a successful surgical repair. Utilization of the NAM technique has eliminated surgical scars associated with traditional columella reconstruction, reduced the number and cost of revision surgeries and has become the standard of care in this Cleft Palate Center. Current research and long term clinical outcomes will be reported. The format will be informal, allowing for questions and answers both during and after presentations.

Contact Email: Adriane.Baylis@NationwideChildrens.org

A “HANDS ON” THREE DIMENSIONAL EAR FRAMEWORK CARVING WORKSHOP
Gordon Wilkes (1), David Fisher (2), Regan Guilfoyle (1), Leila Kasrai (2). (1) University of Alberta, Edmonton, Alberta, (2) University of Toronto, Toronto, Ontario
Contact Email: Gordon.Wilkes@albertahealthservices.ca

BACKGROUND & PURPOSE: Microtia reconstruction continues to be a challenging endeavour for all plastic surgeons. Previous training methods have proved inadequate to prepare reconstructive surgeons for an autonomous ear reconstruction using costal cartilage. Surgical simulation is becoming an increasingly effective way to augment traditional surgical teaching. We have developed a three dimensional ear framework model as well as an iPad app for teaching ear reconstruction.

METHODS & DESCRIPTION: The course would consist of a 1.5 - 3 hour workshop where the participants carve an ear framework from the rib model. They would be supervised by the faculty during the carving process to optimize the potential for success. Surgical instruments and all models would be provided.

Disclosure: Professional - Dr. Wilkes has acted as a consultant for KLSMartin for which he receives no remuneration. KLSMartin markets the ear training model used.
FEEDING AND SWALLOWING CONCERNS IN THE CHILD WITH CLEFT PALATE OR CRANIOFACIAL SYNDROMES: INTRODUCTION, TRAINING, AND DISCUSSION

Kerry Mandulak (1), Scott A. Dailey (2), (1) Pacific University, Forest Grove, OR, (2) Univ of IA Hospitals & Clinics, Iowa City, IA

Contact Email: mandulak@pacificu.edu

BACKGROUND & PURPOSE: While cleft lip and palate (CLP) is the most prevalent birth defect in the United States (CDC, 2006), very little research is available regarding the best practices for feeding in this population. A review of the available literature on feeding interventions revealed vague recommendations that primarily consisted of the use of squeezable versus rigid bottles, and no evidence for the use of maxillary plates (Bessell et al., 2011; Reid, 2004). Currently, no recommendations exist for the best use of specific bottles or nipples, or how to best instruct parents. Infants who have cleft palate, with or without cleft lip as part of a syndrome, may have additional feeding and swallowing difficulties due to the other associated characteristics within a particular syndrome or association. Feeding modifications may include those typically used for infants with isolated cleft palate, with or without cleft lip, with additional positioning compensations, nipple modifications, and supplemental feedings. The scope of practice for the SLP has been gradually increasing over the past ten years, which has had the unfortunate impact of decreasing the amount of training students receive for CLP and related craniofacial syndromes. Consequently, there are fewer professionals who can provide this training and fewer graduate programs that are offering such coursework. In addition, opportunities for collaboration and collective problem-solving and knowledge sharing are limited. The combined issues of a lack of practice standards and hesitant clinicians results in a population that has the potential to be underserved. The purpose of this presentation will be to provide foundational knowledge and hands-on experience with special bottles / feeding equipment related to feeding practices for clinicians working with children with CLP and other cleft related syndromes and disorders. In addition, challenging cases will be presented with the opportunity for small-group discussion and large-group consensus to be conducted.

METHODS & DESCRIPTION: The presentation will begin with a brief overview of cleft anatomy & physiology related to feeding and swallowing, and a short description of specific feeding practices for children with CLP at four age-related stages. Within each stage, the effect of CLP on the typical developmental course of feeding skills will be emphasized. Feeding issues specific to cleft related syndromes and disorders will be addressed. Demonstration and hands-on experience with specific cleft feeders will be provided. Finally, a moderated small and large group discussion of two to three challenging cases will be presented, in order to practice collaborative problem-solving and allow for sharing of audience experience and knowledge. Throughout the presentation, the authors will focus on the evaluation process and an interdisciplinary team management approach. Encouraging clinicians to feel confident and competent working with this population is the overall goal.

Disclosure: Salary - Salaries received at our respective positions for work involved with cleft and craniofacial clinical service delivery or teaching. Royalty - Mandulak receives a quarterly royalty for two online continuing education programs regarding assessment and treatment of cleft palate speech disorders. Professional - Mandulak and Dailey both serve on ASHA committees related to cleft lip and palate (Special Interest Group 5). Mandulak serves on the Board of Directors for a non-profit (Smile Oregon) that provides access to orthodontic and prosthetic care in a lecture format, but with active open dialogue for audience participation.

PATIENT TREATMENT BURNOUT FOR INDIVIDUALS WITH CLEFT AND CRANIOFACIAL CONDITIONS

Colleen Wheatley (1), (1) University of Toronto, North York, Ontario

Contact Email: colleen@aboutface.ca

BACKGROUND & PURPOSE: The purpose of this presentation is to explore patient perspective and the contributors to patient burnout. Patient treatment burnout being when the patient is resistant to following a treatment plan despite potential positive outcomes. Qualitative research indicates that burnout can be experienced by cleft and craniofacial patients. It is important for Health Care Professionals to understand the patient perspective and mental and emotional needs as they are a part of patients overall health. Best practice should incorporate potential patient burnout into the initial treatment plan.

METHODS & DESCRIPTION: This session will consist of a lecture format and power point presentation. Information will include a combination of literature review as well as results from focus groups and case studies of affected individuals while applying biopsychosocial theories to patient care.

CLEFT CARE FOR INTERNATIONALLY ADOPTED CHILDREN: CHALLENGES AND STRATEGIES

Shao Jiang (1), Alison Kaye (1). (1) Children’s Mercy Hospital, Kansas City, MO

Contact Email: sjiang@cmh.edu

BACKGROUND & PURPOSE: Congenital facial clefting involving the lip and/or palate are some of the most common birth defects worldwide, with an average incidence of 1.750 live births. These children may or may not have coincident syndromes and/or other associated medical problems. In some countries these children are frequently abandoned or put up for adoption. As a result, cleft teams can see an influx of children with cleft conditions originating from other countries who may or may not have already had surgery or other interventions. Helping these adoptive families establish a new care plan and determine what these children’s needs will be can be very challenging for Cleft Team members. In addition there is the possibility for other medical, genetic, speech and language, or behavioral issues that can further impact their care.

METHODS & DESCRIPTION: This presentation will use a power point format to delineate the process of international adoption of children with a cleft condition and their integration into a comprehensive cleft team. Case examples will be used to highlight challenging surgical and medical situations with which these patients may present. This includes previous surgeries, typical and atypical developmental delays, language acquisition, common infections, and a variety of nutritional challenges. Understanding what additional challenges these children may provide can help the cleft team and family work more effectively at obtaining optimal outcomes for these patients.

SOCIAL AND SUPPORT SERVICES OFFERED BY CRANIOFACIAL CENTERS: A NATIONAL SURVEY AND INSTITUTIONAL EXPERIENCE

Mona Ascha (1), Gregory Lakin (2), Irene Link (2), Jarred McDaniel (3), (1) Case Western Reserve University, Gates Mills, OH, (2) University Hospitals, Cleveland, OH, (3) University Hospitals/Case Western Reserve, Cleveland, OH

Contact Email: mxa256@case.edu

BACKGROUND & PURPOSE: The needs of patients with craniofacial abnormalities are complex and multifaceted. A multidisciplinary care approach throughout the life of the patient is standard of care. However, the availability of services is not uniform. Furthermore, sources of funding differ across institutions. The purpose of this investigation is to evaluate the availability of services provided by Craniofacial Centers, and the sources of funding for each service.

METHODS & DESCRIPTION: A survey was submitted to the team leaders of all approved American Cleft Palate-Craniofacial (ACP) teams (N=161). The survey focused on auxiliary services considered to be potentially beneficial, as well as sources of funding for these services. The areas of interest included dedicated social work staff, Craniofacial Center-sponsored parties, support groups, summer camps, scholarship opportunities, and social media interaction. A second survey was administered to patient families inquiring about interest in these services, on a scale from one to five, with five indicating maximal interest.
LONGITUDINAL PREDICTORS OF QUALITY OF LIFE AND SELF-IMAGE FOR CHILDREN AND ADOLESCENTS WITH CRANIOFACIAL CONDITIONS

Celia Heppner (1), Crista Donewar (2), Lillian Hamili (3), Lauren Perrin (3). (1) Children’s Medical Center; UT Southwestern Medical Center, Dallas, TX, (2) Children’s Medical Center, Dallas, TX, (3) UT Southwestern Medical Center, Dallas, TX

BACKGROUND & PURPOSE: Existing literature on psychosocial outcomes in the craniofacial population indicates that adverse psychosocial experiences have been linked to lower quality of life in children and adolescents with craniofacial conditions (Topolski, Edwards, & Patrick, 2005). Additionally, youth with a craniofacial anomaly have been found to have lower satisfaction with their appearance than controls (Hunt et al., 2006), and satisfaction with appearance has been identified as a predictor of overall psychosocial adjustment (Berger & Dalton, 2011). Despite the focus on quality of life and self-image as important constructs within this population, few studies have addressed factors which may impact changes in these variables over time. The present study aims to identify factors that contribute to changes in quality of life and self-image in children with craniofacial conditions.

METHODS & DESCRIPTION: Retrospective chart review was conducted for patients seen in craniofacial team clinic between March 2011 and August 2014. Patients ages 8 to 18 who were seen for both initial and follow-up visits with more than 6 months and less than 2 years between visits were included in the sample. Information gathered via chart review included medical and surgical history, findings from clinic psychosocial evaluations, and child self-reported scores from questionnaires given at clinic visits (PedsQL and craniofacial screening questionnaire).

RESULTS: The sample consisted of 68 patients (57.4% male, mean age 12.79). Hierarchical multiple regression was used to identify predictors of self-reported PedsQL scores at follow-up. Worry about others’ perception of appearance at baseline predicted PedsQL scores at follow-up, after controlling for initial PedsQL scores and time between visits ($R^2 = 0.56; p = 0.01$). Other variables of interest (interim surgery, mood symptoms, and social support) were not significant in this model. Hierarchical multiple regression also was utilized to identify predictors of self-image composite scores at follow-up. After controlling for self-image scores at baseline and time between visits, depressive symptoms reported at baseline and craniofacial surgery between visits together ($R^2 = 0.47; p < 0.05$) were found to predict self-image scores at follow-up.

CONCLUSIONS: These findings suggest that worry regarding the social impact of a facial difference may act as a risk factor for poorer quality of life over time. Additionally, depressive symptoms at baseline may put patients at risk for lower self-image ratings in the future, while undergoing craniofacial surgery appears to predict higher self-image ratings at follow-up. Further research is warranted to examine the differential effects of various types of surgery on self-image. Interventions targeting self-image also should be evaluated to determine efficacy in improving quality of life.
MEASURING QUALITY OF LIFE, ANXIETY AND DEPRESSION IN 101 CONSECUTIVE ADOLESCENTS WITH CLEFT LIP AND CLEFT PALATE

Cristina Hernandez (1), Mark Lloyd (1), Kristina Wilson (1), David Khechoyan (1), Edward Buchanan (1), Clayton Hollier (1), Laura Monson (1). (1) Texas Children's Hospital, Houston, TX

Contact Email: cxherna2@texaschildrens.org

BACKGROUND & PURPOSE: Because the face is critical and unique in human development and social interactions, having a cleft lip and/or cleft palate (CL/P) can put youth at higher risk for psychosocial difficulties than their non-affected peers. Stigmatizing social responses to facial disfigurement can lead to negative self-perceptions of competence and physical attractiveness. Our aim is to see if our adolescent patients have increased levels of anxiety, depression and/or poor quality of life (QOL) as a result of having a CL/P and if their current quality of life can be correlated with severity of the initial cleft, presence of velopharyngeal insufficiency (VPI), age, race, sex or socioeconomic status (SES).

METHODS & DESCRIPTION: Children aged 11-18 who were seen in the TCH Cleft Clinic and consented to participate were administered the PROMIS anxiety and depression questionnaires and the YQQL-FD (Youth Quality of Life-Facial Differences) questionnaire which assesses five domains: negative consequences of having a facial difference, negative self image, experienced stigma, positive consequences of having a facial difference, and coping. Data was also collected on the type of cleft (cleft lip only, unilateral cleft lip and palate or bilateral cleft lip and palate), age, race and sex of the patient and presence of VPI. Cleft palate only patients were excluded. Children who scored outside the normal range for anxiety, depression or coping were referred to neuropsychiatry for additional assessment and testing. Means and standard deviations of the scores were reported Kruskal-Wallis Tests (for 3 or more groups) and Wilcoxon rank tests (for 2 groups) were applied to test for differences between genders, diagnoses, races, and hypernasality. Multivariate regressions were applied as well.

RESULTS: 101 children (52 female, 49 male) enrolled; 4 CL only, 27 Bilateral CL/P and 74 unilateral CL/P. Average age 14.5 years, SD 2.4yrs, 54 Hispanic, 35 White, 6 Asian, 5 African American. Anxiety Score 46.6 +/- 11.7, Depression Score 46.2 +/- 11.9, Negative Consequences 36 +/- 29.7, Positive consequences 37.4 +/- 27.1, Coping 55.4 +/- 30.1, Stigma 26.1 +/- 23.6. In univariate analysis, the anxiety and depression scores differed significantly by gender (P<0.0001). There are no differences among the 3 different diagnoses for Anxiety Score or Positive Consequences, (P>0.73) and (P>0.12). In multivariate analysis, females were expected to have 9.0 +/- 2.3 points higher Anxiety scores (P<0.0001) and 8.7 +/- -2.2 points higher depression scores after adjusting for other risk factors. Females were more likely to report negative consequences, as were children with unilateral cleft lip and palate.

CONCLUSIONS: Children with CL/P are at significant risk of having anxiety, depression and decreased quality of life, especially our adolescent females. More research and a higher index of suspicion are needed to determine the timing and best intervention strategy for patients and families.

LONGITUDINAL ANALYSIS OF HYPERNASALITY IN SCHOOL-AGED CHILDREN WITH REPAIRED CLEFT PALATE

David Zajac (1), John Preissler (1), Amelia Drake (2), Marziye Eshghi (1), Jamie McGee (1), Daniela Vivaldi (3), Maureen Feldbaum (4). (1) University of North Carolina at Chapel Hill, Chapel Hill, NC, (2) University of North Carolina, Chapel Hill, NC, (3) UNC - Chapel Hill, Chapel Hill, NC, (4) University of North Carolina at Chapel Hill, Chapel Hill, NC

Contact Email: david_zajac@unc.edu

BACKGROUND & PURPOSE: Hypernasality is one of the primary symptoms of velopharyngeal (VP) dysfunction in children with repaired cleft palate. While there is rather robust evidence of changes in voice and speech parameters such as fundamental frequency (fo) and speaking rate with age, there is little evidence to show if hypernasality changes with age. The purpose of this study was to determine a) if hypernasality changed in children with repaired cleft palate from ages 5 to 7 years, and b) what specific speech parameters accounted for ratings of hypernasality.

METHODS & DESCRIPTION: Twenty-three children (7 males, 16 females) with repaired nonsyndromic cleft palate (21 cleft lip and palate, 2 cleft palate only) were recorded at two or three time points for a total of 53 recordings between the ages of 5 to 7 years. Seven children were recorded at three time points corresponding to ages 5, 6, and 7. The remaining 16 children were recorded for two of the three ages. None of the children had secondary palatal surgeries and/or oronasal fistulas. Recordings consisted of the children counting from one to five. Nine adult listeners used direct magnitude estimation (DME) to judge the hypernasality of the children at different ages.

A reference sample with a modulus value of 100 was used to judge the recordings. Mean fo, speaking rate in syllables-per-second (SPS), mean duration of voiced segments, percentage of voicing and mean relative intensity were determined from the audio recordings as potential explanatory variables. Linear mixed models with random intercepts and slopes and with age as a categorical fixed effect were used to evaluate the data; voice/speech parameters were assessed by adding them to the model individually.

RESULTS: Inter-listener reliability of DME was moderately high as reflected by an intraclass correlation coefficient of .837. On average (geometric means), listeners rated hypernasality as 138.5 (SE 13.4) at age 5, 119.9 (SE 9.6) at age 6, and 118.3 (SE 11.6) at age 7. Thus, hypernasality was rated to be approximately 38% greater at age 5 (relative to the modulus value) with this effect declining to about 20% at ages 6 and 7. While the F-test for overall differences across ages was not significant at the .05 level (p=.099), there was a significant difference between ratings at ages 5 and 7 (p=.037) and a nearly significant difference between ages 5 and 6 (p=.069) in post hoc tests. Had the sample size been larger, both the main effect of age as well as pairwise comparisons would likely have reached statistical significance. None of the voice/speech parameters was statistically significant in accounting for hypernasality adjusting for age.

CONCLUSIONS: These findings suggest that perceived hypernasality tends to decrease as a function of increasing age in school-aged children with repaired cleft palate. The findings will be discussed relative to possible physiologic reasons and diagnostic decisions relative to the necessity and/or timing of secondary surgical interventions.

IMPACT OF ACHIEVING VELOPHARYNGEAL SUFFICIENCY EARLY IN MAXIMIZING CHILDREN’S ARTICULATION PERFORMANCE

Amy Morgan (3), Claudia Crilly Bellucci (2), Brent Collett (3), Arthur Curtis (4), Mary O’Gara (5), Pravin Patel (6), Mitchell Grasseschi (7), David Morris (6), Kathleen Kapp-Simon (8), (1) Shriners Hospitals for Children - Chicago, Chicago, IL, (2) Shriners Hospitals for Children - Chicago, Chicago, IL, (3) University of Washington School of Medicine, Seattle, WA, (4) Shriners Hospitals For Children - Chicago, Chicago, IL, (5) Shriners Hospitals for Children; Northwestern University, Chicago, IL, (6) University of Illinois, Chicago, IL, (7) Shriners Hospitals for Children - Chicago, Chicago, IL, (8) Shriners’ Hospitals for Children – Chicago, Chicago, IL

Contact Email: amymorgan757@gmail.com

BACKGROUND & PURPOSE: Medical professionals interested in improving speech outcomes of children with cleft palate have debated the impact of timing of primary palatoplasty. One confounding variable in determining this effect is the adequacy of the initial repair, which may not create a sufficient speech mechanism. The current study investigates the following relationships: 1) the impact of age at which velopharyngeal sufficiency (AgeS) is established on articulation and 2) the effect of severity of persistent velopharyngeal insufficiency (VPI) on the articulation outcomes of children with repaired cleft palate.

METHODS & DESCRIPTION: Children between 3 and 9 years of age (N=108) with nonsyndromic cleft palate with or without cleft lip were recruited. All children participated in pressure-flow testing of VP function and the Goldman-Fristoe Test of Articulation-2nd Edition (GFTA). GFTA transcriptions were used to identify the presence and number of cleft related speech errors (e.g., backing and nasal substitutions [CRE]). For children determined to have sufficient VP function based on pressure flow testing (n=73), AgeS was estimated based on medical chart review (age at most recent VP surgical backing and nasal substitutions [CRE]). For children with normal VP function, age as a categorical fixed effect were used to evaluate the data; voice/speech parameters were assessed by adding them to the model individually.

RESULTS: The OLS regression model revealed a statistically significant relationship between AgeS and GFTA score (B=-2.91, p=0.04), but no effect declining to about 20% at ages 6 and 7. While the F-test for overall differences across ages was not significant at the .05 level (p=.099), there was a significant difference between ratings at ages 5 and 7 (p=.037) and a nearly significant difference between ages 5 and 6 (p=.069) in post hoc tests. Had the sample size been larger, both the main effect of age as well as pairwise comparisons would likely have reached statistical significance. None of the voice/speech parameters was statistically significant in accounting for hypernasality adjusting for age.

CONCLUSIONS: These findings suggest that perceived hypernasality tends to decrease as a function of increasing age in school-aged children with repaired cleft palate. The findings will be discussed relative to possible physiologic reasons and diagnostic decisions relative to the necessity and/or timing of secondary surgical interventions.
CONCLUSIONS: A negative effect of older age at VP sufficiency on standardized articulation score and presence of CRE was identified, suggesting that prolonged VPI continues to impact articulation even after sufficiency is established. Furthermore, increased VP area measurements were associated with worse articulation and higher rate of cleft related articulation errors. These findings highlight the importance of active assessment and monitoring of VPI in children with cleft palate.

PREDICTORS OF HYPERNASAL SPEECH IN CHILDREN WITH 22Q11.2 DELETION SYNDROME

Adriane Baylis (1), David Zajac (2), Caitlin Cummings (1), Gregory Pearson (1), Richard Kirschner (1). (1) Nationwide Children’s Hospital, Columbus, OH, (2) University of North Carolina at Chapel Hill, Chapel Hill, NC

Disclosure:

Contact Email: adriane.baylis@nationwidechildrens.org

BACKGROUND & PURPOSE: Management of velopharyngeal dysfunction (VPD) in children with 22q11.2 deletion syndrome (22q) poses a unique challenge due to its multifactorial etiology. A combination of both structural and neuromuscular factors has been shown to contribute to VPD in 22q (Hultman et al., 2001; Baylis et al., 2009). The purpose of this study was to investigate group differences in VP physiology and ratings of hypernasality in children with 22q, as compared to age-matched nonsyndromic peers with and without VPD.

METHODS & DESCRIPTION: Participants included 21 children with 22q (n=13 with a pharyngeal flap, 9 children with repaired cleft palate (CLP) group), and 18 children with typically-developing children (TD group) matched for age and gender. Participants completed a perceptual speech evaluation, nasometry, and pressure-flow (PERCI-SARS) testing. A subset completed nasopharyngoscopy. Procedures were recorded and a standard speech sample was used. Measures of VP physiology included: VP orifice area (VPA), peak intraoral pressure (IOP), nasal airflow (peak V), and VP closure timing and derived from the duration of the nasal airflow pulse (V pulse) in the stimulus “hamper.” Blinded listener ratings of hypernasality were obtained using visual analog scaling (VAS). Results were analyzed using descriptive statistics, one-way ANOVA, and regression analysis.

RESULTS: Statistically significant differences were detected between the groups on IOP, peak V, VPA, V pulse, and VAS ratings (all p<.005). Post-hoc analysis revealed that the 22q and CLP groups were similar on many of the aerodynamic variables. VAS ratings of hypernasality were significantly higher for the 22q and CLP groups than the TD group (p<.0001). VPAs and nasalance scores for the 22q and CLP groups were not significantly different. Nasalance scores were highly correlated with VAS ratings of hypernasality (R²= 0.664) and modestly with VPAs (R² = .397). Linear regression analysis revealed that VPA (R²=0.312, p<.001) was a significant predictor of VAS ratings of hypernasality, however a polynomial (curvilinear) model best predicted the relationship between VPA and VAS ratings for all participants (R²=0.509).

CONCLUSIONS: Overall, the 22q group behaved similar to the CLP group across many measures of VP physiology and ratings of hypernasality, with some individual differences observed. A curvilinear relationship was observed between VP orifice size and listener ratings of hypernasality. Interestingly, some participants with 22q with minimal aerodynamic evidence of VPD (i.e., aerodynamic findings consistent with “adequate” closure per Warren et al., 1964), were still perceived to have hypernasal speech. Other factors such as rate, pitch, or articulation, may play an important role in determining listener judgments of hypernasality in children with 22q and warrant further investigation.

Disclosure: Salary- All authors receive a salary at their respective academic institutions and medical centers. Professional - Dr. Baylis and Dr. Kirschner serve on Council of the American Cleft Palate Craniofacial Association. Dr. Baylis also serves on the Coordinating Committee of ASHA SIG 5.

83 PRE AND POST-PUBERTAL CHANGES: THE EFFECT OF GROWTH ON THE VELOPHARYNGEAL ANATOMY

Jamie Perry (1), Lakshmi Kollara (1), Graham Schenck (1), Xiangming Fang (1), David Kuehn (2), Bradley Sutton (3). (1) East Carolina University, Greenville, NC, (2) University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, (3) University of Illinois, Urbana-Champaign, Urbana, IL

Contact Email: perryja@ecu.edu

BACKGROUND & PURPOSE: Horizontal and vertical dimensions of the vocal tract across growth are critical factors that relate to the ability to execute proper velopharyngeal function. Studies have demonstrated a significant sex effect in the length of the vocal tract and the relative proportions of oral and pharyngeal cavities (Fitch & Giedd, 1999). However, these sex differences were not evident in children prior to puberty. The nasopharynx and velum display similar pubertal effects in which sex differences for nasopharyngeal age become significant only after 13 years of age (Jeans et al., 1981). Growth rates of nasopharyngeal hypopharyngeal, however, are not aligned with pharyngeal growth rates (Jeans et al., 1981). It is not known how these soft tissue observations relate to the variations found in the underlying VP musculature. Perry et al. (2014) reported significant muscle differences between adult males and females. However, Kollara et al. (2014) did not observe a sex effect in children between 4-9 years of age. Growth effects of the VP port are seldom considered as factors of interest in surgical planning for pharyngoplasties involving augmentations to the pharyngeal space. The paucity of these data may thus negatively affect surgeries that involve the medio-lateral axis, such as those affecting the cranial vault or pharyngeal cavity. The purpose of this study is to examine the effects of growth, sex, and race on the VP musculature.

METHODS & DESCRIPTION: A high resolution, T2-weighted turbo-spin-echo 3D anatomical scan (SPACE) was used to acquire static velopharyngeal data on 114 children with normal velopharyngeal anatomy between 4-17 years of age. Children were divided into three groups based on age including: (1) pre-pubertal age (4-8 yr), (2) peri-pubertal (9-12 yr), and (3) post-pubertal (13-17 yr). Variables include the levator muscle, velum, VP port, vocal tract, and cranial base angle growth changes.

RESULTS: Consistent with previously published vocal tract data, a pubertal effect was observed for the levator muscle and velum. Significant racial differences were observed for the velum. Age was a significant factor (p < 0.05) across all muscle, velar, and vocal tract variables. Linear regression analyses demonstrated predictive factors of cranial base angle and vocal tract on the growth and changes in the levator muscle and velum. The four-variable model for levator muscle length (gender, race, age, and cranial base angle) is able to account for 51% of the variability for this muscle measure.

CONCLUSIONS: Results from this study demonstrate a pubertal effect on the interaction of sex and race variables in the VP anatomy. This information is valuable in understanding how changes in the height and depth of the VP port are controlled by muscle variations.

85 PHARYNGEAL FLAP OUTCOMES BASED UPON AERODYNAMIC ASSESSMENT OF ORAL AND NASAL SPEECH SEGMENTS: PRELIMINARY FINDINGS

David Zajac (1), Daniela Vivaldi (2), Amelia Drake (3), John van Aalst (1), Taylor Warren (1), Marziye Eshghi (1), Maureen Feldbaum (4). (1) University of North Carolina at Chapel Hill, Chapel Hill, NC, (2) UNC - Chapel Hill, Chapel Hill, NC, (3) University of North Carolina, Chapel Hill, NC, (4) University of North Carolina at Chapel Hill, Chapel Hill, NC

Contact Email: david_zajac@unc.edu

BACKGROUND & PURPOSE: Pharyngeal flaps are arguably the most recommended secondary procedure to correct velopharyngeal inadequacy (VPI) for speech. While Peterson-Falzone et al. (2001) noted a wide range of reported success rates of 60% to 100% across studies, they also emphasized that “too many authors” used only vague categories of speech outcomes such as “normal” or “improved”. They also noted that many studies did not consider outcome function (i.e., hypernasal speech) as a negative outcome. Successful secondary procedures and secondary flap surgery should include adequate function for: (1) oral speech segments, (2) nasal speech segments, and (3) nasal breathing. The purpose of this retrospective study was to use aerodynamic criteria to evaluate oral and nasal speech segments following pharyngeal flap surgery in children with cleft palate.

METHODS & DESCRIPTION: Pressure-flow assessments were done on 14 children (9 boys, 5 girls) who underwent superior pharyngeal flap procedures by a single surgeon. They ranged in age from 3 to 15 years (mean=8.1 years); 12 had cleft lip and palate while 2 had cleft palate only. Mean interval from surgery to follow-up was 6.5 months (range of 3 to 12 months). Mean velopharyngeal (VP) orifice areas associated with the oral /p/ in the syllable /pa/ and the word “hamper” were categorized as “adequate” if less than or equal to 5 mm²; mean VP orifice area associated with the nasal / m/ in “hamper” was categorized as “adequate” if greater than 5 mm².

RESULTS: Ten of 14 children (71%) were categorized as “adequate” on both oral speech segments following surgery. Eight of 12 children (67%) were categorized as “adequate” on the nasal speech segment (data not available for two children). Only 4 of 12 children (33%), however, were categorized as “adequate” on both oral and nasal speech segments.

CONCLUSIONS: Success of pharyngeal flap surgery for a single surgeon was moderately high when only oral speech segments were considered. When a more stringent criterion was used that included nasal speech segments, success rate was more measured. These preliminary results suggest the need for prospective studies that consider aerodynamic and perceptual outcomes of both oral and nasal speech segments to fully assess the success of pharyngeal flap surgery.
OUTCOMES ANALYSIS OF SURGICAL AND NON-SURGICAL INTERVENTION FOR NEONATES WITH ROBIN SEQUENCE

Christopher Runyan (1), Christopher Gordon (1), Brian Pan (1), Shahryar Tork (1)
(1) Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
Contact Email: chris.runyan@chcm.org

BACKGROUND & PURPOSE: Pierre Robin Sequence (PRS) is caused by micrognathia, which leads to glossoptosis and airway obstruction. Multiple treatment modalities are described including conservative treatment, bypass of the obstruction, airway repositioning and correction of the anatomic deficiency. This study presents an outcomes analysis of the largest series of neonates with PRS.

METHODS & DESCRIPTION: An IRB approved, 18-year retrospective review of all neonates treated with PRS was performed. Examined variables included patient demographics, syndromic and neurologic status, feeding outcomes, and polysomnography and microlaryngoscopy data.

RESULTS: 170 neonates were identified and divided into three cohorts based on initial treatment: conservative management (n=47), external mandibular distraction (MD, n=69) and tracheostomy (n=54). Neonates initially treated with MD were more likely to be syndromic (OR=2.93, p=0.005), have neurologic impairment (OR=2.54, p=0.03), GE reflux (OR=2.1, p=0.05) and require intervention within 5 days of birth (OR=60.65, p=0.005) compared with those receiving MD. Polysomnograms obtained pre- and post- intervention had similar significantly improved profiles for patients receiving both MD (obstructive index (OI) decrease 43.8 (p=0.03)) and tracheostomy (OI decrease 44.7 (p=0.008)). However those receiving MD had significantly greater avoidance of gastrostomy (19.1 vs 83.7%, p<0.0001) and higher success in exclusive oral diet (85.7% vs 38.9%, p=0.0001) compared to the tracheostomy patients. Four factors were found to strongly associate with failure of MD: low birth weight (OR=12.57, p=0.03), syndromic status (OR=8.48, p=0.05), neurologic impairment (OR=8.33, p=0.02) and poor post-intervention polysomnogram (OR=11.0, p=0.04). These factors may be used to predict those at risk for failure of MD with high sensitivity and specificity.

CONCLUSIONS: Mandibular distraction is an efficacious treatment modality for neonates with PRS, and should be considered the first line intervention to avoid tracheostomy. Patient variables including birth weight, syndromic status, neurologic impairment and multi-level airway obstruction do not preclude the utilization of MD; however, predicting the future necessity of tracheostomy and the ability to decannulate following MD of these patients is less reliable. The presence of multi-level airway obstruction should not preclude the use of mandibular distraction to treat neonates with PRS-associated airway obstruction.

PREDICTING FAILURE OF MANDIBULAR DISTRACTION OSTEONEGENESIS FOR INFANTS WITH ROBIN SEQUENCE: A BI-INSTITUTIONAL STUDY

Melinda Costa (1), Sunil Tholpady (1), Mark Urata (2), Jeffrey Hammoudeh (2), Rachel Sargent (2), Ellynore Florendo (2), Luke Sanborn (2), Roberto Flores (3)
(1) Indiana University, Indianapolis, IN, (2) Children’s Hospital, Los Angeles, Los Angeles, CA, (3) New York University, New York, NY
Contact Email: melindaliza@gmail.com

BACKGROUND & PURPOSE: The primary purpose of this study is to identify variables associated with failure of mandibular distraction osteogenesis (MDO) in infants with Robin sequence. The secondary purpose is to analyze the ability of the GILLS score to predict outcome of MDO in this patient population. We combined the clinical experience of two active infant distraction centers to collect sufficient MDO failures for statistical analysis resulting in the largest study of neonatal distraction to date.

METHODS & DESCRIPTION: A retrospective review (2004 – 2013) was conducted at two tertiary care children’s hospitals. Infants with Robin sequence who underwent MDO as the primary surgical intervention at less than 6 months of age were identified. Variables reported in the literature to be risk factors for failure as well as those considered to be potential risk factors were analyzed. These included cardiac, Central nervous system (CNS), gastrointestinal, lower airway anomalies including laryngomalacia, genetic anomaly/syndromic diagnosis, isolated disease, Nissen fundoplication, intact palate, gastroesophageal reflux disease (GERD), preoperative intubation, late operation (>2 weeks of age), and low birth weight (<2500 g). The GILLS score was calculated. Success of MDO was defined as avoidance of tracheostomy.

RESULTS: 91 consecutive infants were identified. Mean age at distractor placement was 36 days. Incidence rates included cardiac (22%), CNS (19.8%), gastrointestinal (36%), low birth weight (38%), Crouzon (17.8%), genotypic/syndromic diagnosis (33%), isolated disease (38.5%), Nissen fundoplication (14.3%), intact palate (18.7%), GERD (31.9%), preoperative intubation (13.2%) late operation (77%), and low birth weight (17.6%). Tracheostomy was needed after MDO in 6 patients (6.6%). Patient variables associated with failure of MDO were: CNS anomaly (p <0.0003), Nissen fundoplication (p <0.0007), and intact palate (p <0.0042). There were 3 deaths; none were related to obstructive sleep apnea. A score, INC, based on these risk factors was determined. For infants with < 3 risk factors, INC predicts success with 99% sensitivity, 98% positive predictive value (PPV), 67% specificity, and 80% negative predictive value (NPV). The GILLS score resulted in a 79% sensitivity, 96% PPV, 50% specificity, and 14% NPV.

CONCLUSIONS: Central nervous system anomaly, need for Nissen fundoplication and intact palate are associated with failure of MDO in infants with Robin sequence. The INC scoring system based on the presence of these variables has a high sensitivity and positive predictive value and better predicts failure of MDO compared to the GILLS classification. Prospective analysis should be considered to validate the INC score.

LONGITUDINAL STUDY OF MIDFACIAL ADVANCEMENT IN EARLY INFANCY FOR RELIEF OF SYNDROMIC CRANIOSYNOSTOSIS-ASSOCIATED AIRWAY OBSTRUCTION. AN 8 YEAR FOLLOW UP

Christian Albert El Amm (1), Aaron Morgan (2), Thomas Howard (2), Omar Beidas (2), (1) University of OK, Oklahoma City, OK, (2) University of Oklahoma, Oklahoma City, OK
Contact Email:Christian-ElAmm@ouhsc.edu

BACKGROUND & PURPOSE: Midface advancement in early infancy has been previously described as an effective method for relief of Obstructive Sleep Apnea and tracheostomy decannulation in infants with Syndromic Craniosynostosis affected with severe midfacial retrusion. Concerns have been raised about detrimental effects on growth, risk of relapse, and need for secondary surgery. To our knowledge, there are no published studies addressing these issues. This study reports the 8 year clinical, cephalometric and polysomnographic results.

METHODS & DESCRIPTION: Prospectively collected data of the craniofacial clinic. Indications for surgery were severe Obstructive Sleep Apnea that failed a trial of BiPAP and would have otherwise undergone a tracheostomy. Patients that underwent midfacial advancement were followed with yearly polysomnogram, clinical evaluation, and photographic records. Post-Operative CT scans were obtained at 1 year and 5 years post-operatively. Patients that were younger than 42 months of age at the time of operation were included in the study. Multifactorial reformats and Minimal Intensity Projection reformats were performed on the pre and post-operative CT scans to generate images a digital cephalogram suitable for Cephalometric Analysis. CT scans were selected from our Craniofacial Imaging Library from patients with sagittal synostosis to serve as control population.

RESULTS: Eight patients fit the inclusion criteria. Average age at operation was 22.3 months (range 6-42 months). All patients had intraoperative Nasendoscopy to confirm nasal site of obstruction. Four patients had Crouzon Syndrome (50%), three had Apert’s (37.5%) and one unconfirmed (12.5%). All patients underwent midface distraction using internal distractors, with a horizontal vector for Crouzon patients (as described by Denny et al) and a vertical oblique vector for Apert’s patients (Marchac et al). 87.5% (7/8) underwent Midfacial advancement as part of a Monobloc/Fronto-Facial advancement. 87.5% (7/8) underwent concomitant mandibular distraction using the internal curvilinear distractor (25%) or external multiguide (62.5%). Apnea Hypopnea Index improved from 46.2+/-12.1 preoperatively to 7.3+/-8.1 postoperatively. Longitudinal follow up showed mild worsening of the Polysomnographic data two years postoperatively, and 37.5% of patients (3/8) underwent ancillary airway procedures (Tonsillectomy and Adenoidectomy). No patient required a repeat Midfacial advancement. Patients were found to have an average of 1.4 CT scans per year, likely due to involvement of multiple specialties. Growth velocities of the Midfacial measurements (UPFH, UAFH and Facial depth) were found to be statistically significant at 0-24 month, but not at the 48-60 month intervals.

CONCLUSIONS: Midfacial advancement offers lasting relief of Upper Airway Obstruction. Transient limitation of growth velocities were observed, emphasizing the importance of mild-moderate overcorrection. These growth disturbances became undetectable after two years postoperatively.
EN BLOC SUBCRANIAL ROTATION DISTRACTION ADVANCEMENT FOR THE TREATMENT OF SEVERE OBSTRUCTIVE SLEEP APNEA IN YOUNG SYNDROMIC CHILDREN

Richard Hopper (1), Christina Tragos (1), Hitesh Kapadia (1). (1) Seattle Children’s Hospital, Seattle, WA
Contact Email: richard.hopper@seattlechildrens.org

BACKGROUND & PURPOSE: Craniofacial Microsomia (CFM) and Treacher Collins Syndrome (TCS) have variable presentations, but both can present at a young age with symmetric subcranial clockwise rotation hypoplasia deformity with acceptable maxillo-mandibular (MM) relationship but with severe obstructive sleep apnea (OSA). Airway evaluation in these children demonstrates multiple levels of obstruction that cannot be treated with isolated jaw surgery resulting in tracheostomy dependence. Purpose: To describe the rotation deformity in symmetric CFM and TCS and to evaluate the success of simultaneous subcranial LeFort III rotation advancement with bilateral mandible ramal distraction shortening in treating severe OSA.

METHODS & DESCRIPTION: Two children with CFM and one with TCS were included with AHI of 84 and 38 (TCS patient was tracheostomy dependent). Superimposition skullbase analysis was performed on CT scans pre- and post-treatment. OSA was measured using polysomnography. Patients were treated with bilateral subcranial LeFort III rotation estimate the advancement range of the patient along with simultaneous bilateral ramal shortening. They were maintained in MMF during activation, and the movement was driven by an external halo based device with simultaneous mandible distraction.

RESULTS: The MM plane rotated 20, 12, and 25 degrees respectively, and SNA increased 10, 8, and 11 degrees, AHI decreased from 84 to 1 and 38 to 3, with resolution of the need for tracheostomy.

CONCLUSIONS: Simultaneous clockwise rotation of the entire subcranial facial skeleton in primary dentition is possible. The differential advancement and the posterior lengthening of the maxilla and mandible had a dramatic effect on multi-level severe OSA to avoid tracheostomy.

Disclosure: Receipt of Intellectual Property Rights/Patent Holder - Richard Hopper is the inventor of a patented device licensed to KLS Martin. The device is not discussed in this presentation.

VOLUMETRIC CHANGES IN CRANIAL VAULT EXPANSION: COMPARISON OF FRONTO-ORBITAL ADVANCEMENT AND POSTERIOR CRANIAL VAULT DISTRACTION OSTEOGENESIS

Contact Email: christopher.derderian@utsouthwestern.edu

BACKGROUND & PURPOSE: The goal of cranial vault expansion in patients with syndromic craniosynostosis is to increase the intracranial volume and normalize the head shape. Traditionally, we have relied heavily upon single-stage procedures as our primary means of achieving these goals. The posterior vault holds a theoretically greater potential for volumetric change per millimeter advancement than does the anterior vault. Occipital flattening and the shallow posterior cranial fossa typically found in patients with syndromic craniosynostosis present significant functional and aesthetic problems which make the posterior skull an excellent focus for cranial vault remodeling.

Posterior vault distraction osteogenesis (PVDO)can routinely provide a greater efficiency in volume expansion compared to single stage procedures as our primary means of achieving these goals. The posterior vault holds a theoretically greater potential for volumetric change per millimeter advancement than does the anterior vault. Occipital flattening and the shallow posterior cranial fossa typically found in patients with syndromic craniosynostosis present significant functional and aesthetic problems which make the posterior skull an excellent focus for cranial vault remodeling. In order to control for growth expected during the interval between the preoperative and postoperative CT scans, a normative data set of intracranial volumes of healthy infants was used. The standard growth curve formulated from this data set was used to estimate the change in intracranial volume expected from growth between the pre- and postoperative CT scans in each patient.

RESULTS: The means of age of PVDO patients at the time of surgery were 19.9 months (+/- 15.2 months). The FOA group was then selected to have close a mean age match and repeat procedure match as possible. The mean ages of the FOA group at the time of surgery was 20.2 months (+/- 20.3 months). The mean advancement for FOA was 12.5 mm (+/- 2.59 mm) and for PVDO was 24.8mm (+/- 6.71 mm). The mean difference in volume between the preoperative and postoperative CT scans was 4.6 cm3 for FOA and 5.8 cm3 for PVDO (p=0.357). Secondary changes in the cranial base below the distraction segment were noted in the PVDO group.

CONCLUSIONS: PVDO can provide more than twice the intracranial volume expansion obtained by FOA. This is largely attributable to the greater advancement of the distraction segment achieved by the expansion of the scalp that accompanies PVDO. A trend towards a greater volume gain per millimeter expansion in the PVDO group may involve secondary changes in the cranial base below the distraction segment.

NEW-ONSET CRANIOSYNOSTOSIS FOLLOWING POSTERIOR VAULT DISTRACTION OSTEOGENESIS

Fares Samra (1), Youssef Tahiri (2), James Paliga (1), Valeriy Shubinets (3). (1) The Children’s Hospital of Philadelphia, Philadelphia, PA, (2) Indiana University, Indianapolis, IN, (3) Children’s Hospital of Philadelphia, Philadelphia, PA
Contact Email: fares.samra@uphs.upenn.edu

BACKGROUND & PURPOSE: With posterior vault distraction osteogenesis (PVDO) being an increasingly popular choice for initial management of patients with syndromic craniosynostosis, there have been concerns raised about iatrogenic change to the patient’s open posterior cranial sutures. The aim of this study is to document the incidence of new-onset craniosynostosis (NOC) following PVDO, to determine risk factors for the development of NOC, and to deduce the cranial ramifications of NOC.

METHODS & DESCRIPTION: An IRB-approved retrospective review of all patients who underwent PVDO at our center between 2008-2013 was performed. Demographics, peri-operative data, and pre-operative and post-operative 3D CT scans were analyzed. Cranial suture patency was assessed by 2 craniofacial surgeons independently, using fine-cut preoperative and postoperative 3D CT scans. Inter-rater agreement was evaluated using the Cohen’s kappa coefficient. Statistical analysis was performed using Chi-squared and Fischer’s exact tests.

RESULTS: 30 patients underwent PVDO for suspected increased intracranial pressure and/or severe turbrichachealphy during the study period. 24 patients (80%) had syndromic diagnoses. The average age at the time of PVDO was 2.03 years. Distraction distances ranged from 19 to 40 mm, with an average of 28.7mm. Among the 19 children who had patent lambda sutures prior to PVDO, 17 patients (89.5%) were noted to have new-onset lambdoid synostosis. New-onset lambdoid fusion was not significantly associated with age at distraction (p=0.28), gender (p=0.47), length of distraction (p=0.93), or diagnosis (p=0.61). Similarly, new-onset sagittal synostosis was observed in 7 of the 17 children who had previously had patent sagittal sutures (41%). NOC of the sagittal suture was also not associated with age at distraction (p=0.06), gender (p=0.64), length of distraction (p=0.83), or diagnosis (p=0.25). None of the patients who developed NOC had characteristic head shape changes such as mastoid bulges or scalpocephaly, all continued on their cranial growth curve, and all patients experienced increased intra-cranial pressure during the study period.

CONCLUSIONS: New-onset lambdoid and sagittal synostosis occur frequently following PVDO. While the diagnosis of NOC may be obvious radiographically, the clinical significance of the diagnosis morphometrically, neurodevelopmentally, and in cranial growth have yet to be fully determined. Future work will be aimed at further elucidating the clinical significance of this radiographic finding.

TIMING OF CLOSURE OF THE ANTERIOR SKULL BASE IN SYNDROMIC INFANTS: IMPLICATIONS FOR EARLY MONOBLOC

Richard Hopper (1), Christina Tragos (1), Yifan Guo (2). (1) Seattle Children’s Hospital, Seattle, WA, (2) Brown University, Providence, RI
Contact Email: richard.hopper@seattlechildrens.org

BACKGROUND & PURPOSE: Early monobloc distraction advancement has been proposed as a treatment option for infants born with complex craniosynostosis. We have observed abnormal dural adhesion to the anterior skull base in young children undergoing this procedure that we have not observed in older children. Our hypothesis is that this anterior skull base defect persists in syndromic craniofacial patients in the first few years of life but then closes before the time of traditional monobloc treatment.

Abstracts
This abnormal adhesion may explain the high rate of dura violation experienced during early monobloc surgery, and we propose a modification to allow improved visualization. Purpose: To determine the present and future implications of closure of anterior skull base defects in syndromic craniofacial patients.

METHODS & DESCRIPTION: All syndromic patients who underwent intracranial surgery from 2000-2013 were included. Preoperative CT scans were examined for the presence of an anterior skull base defect which was measured based on defined coronal and sagittal planes. The sizes of the defects were plotted relative to age of patient to estimate timing of closure in this population.

RESULTS: 22 syndromic patients were included with age at CT scan ranging from 1 to 62 months. All patients less than age 10 months had a defect present, with an coronal size range of 6-14mm. There was a progressive decrease in defect size with age, with all patients after 24 months age not demonstrating a defect.

CONCLUSIONS: The anterior skull base defect in syndromic infants has not been well described. Any surgery requiring dissection in this area before two years of age, such as early monobloc, is at risk of tearing the dural adhesion. We have successfully performed five monobloc osteotomies in patients with anterior skull defects without a dural tear by using an anterior window approach to directly visualize this area during dissection.

Disclosure: Receipt of Intellectual Property Rights/Patent Holder – Richard Hopper is an inventor of a patented device licensed to KLS Martin which is not discussed in the presentation.

 SUPRA-BROW APPROACH FOR NEUROSURGICAL ACCESS TO ANTERIOR CRANIAL FOSSA AND ETHMID SINUS: TECHNIQUE, RESULTS, AND CONSIDERATIONS

Raj Vyas (1), Michael Alperovich (2), David Staffenberg (2), (1) University of California, Riverside, Riverside, CA, (2) New York University Langone Medical Center, New York, NY

Contact Email: rajvyas@ucr.edu

BACKGROUND & PURPOSE: Traditional neurosurgical access to tumors or vascular anomalies of the anterior cranial fossa and/or ethmoid sinus requires coronal incision and extensive frontal dissection. Here we detail a limited supra-brow approach, focusing on operative technique, anatomic exposure, and clinical considerations.

METHODS & DESCRIPTION: Operative Technique: After epinephrine infiltration, a supra-brow incision is made. Intramuscular dissection separates preorbital orbicularis oculi from inferior frontalis. Frontal periosteum is identified and supraperiosteal exposure is obtained from glabella medially to deep temporoparietal fascia laterally. The periorbita surrounding the supraorbital nerve is incised and the nerve is reflected inferiorly with periorbita (making an osteotomy for true foramina). Next, a medially based pericranial flap is raised, exposing frontal bone for mini-craniotomy; this flap is kept protected beneath the medial frontalis muscle. After neurosurgical intervention and dural repair, cranial bone is rigidly restored. Overlying soft tissue is closed in layers. Anatomic Exposure: Before craniotomy, various maneuvers provide additional exposure. Subperiosteal dissection within the supra-medial orbit permits supraorbital craniotomy and access to the ethmoid sinus. Elevating anterior temporalis permits more lateral craniotomy and access to neurosurgical targets within the lateral anterior cranial fossa. Clinical Considerations: To prevent injury to the fronto-temporal branch of the facial nerve, dissection over the frontal bone is supraperiosteal and dissection over temporals is just above deep muscle fascia. When the craniotomy includes lateral frontal sinus, mucosa is burred off the removed bone and in situ sinus; the nasofrontal outflow tract is obliterated with the pericranial flap and sealed with fibrin glue. The preserved pericranial flap can also be used to restore dural integrity. When bone is deficient, the removed cranium can be split for additional graft.

RESULTS: We used the supra-brow approach in 14 patients to provide sufficient access for definitive neurosurgical management of an anterior cleft meningioma, three lateral frontal lobe meningioma, nine aneurysms of the anterior communicating artery, and an intra-ethmoidal arterio-venous malformation. Blood loss during exposure was minimal in all cases. There was no injury to the ophthalmic division of trigeminal nerve or frontal branch of facial nerve. Split calvarial grafts were used in nine of fourteen patients. At one year follow-up, all patients had excellent frontal contour, bony union, and an aesthetic scar.

CONCLUSIONS: A supra-brow approach limits extensive dissection and permits sufficient neurosurgical exposure to tumors and vascular anomalies of the entire anterior cranial fossa and ethmoid sinus.

A COMPARATIVE STUDY OF 3D NASAL SHAPE IN UNILATERAL CLEFT LIP AND PALATE NOSES FOLLOWING ROTATION-ADVANCEMENT AND NAM-CUTTING PRIMARY NASAL REPAIR

Banahef Hosseinian (1), Asma Almadian (2), Pradip Shetye (1), Court Cutting (1), Barry Grayson (3), (1) NYU Langone Medical Center, Institute of Plastic and Reconstructive Surgery, New York, NY, (2) NYU Langone Medical Center, Institute of Plastic and Reconstructive Surgery, NY, NY, (3) NYU Langone Medical Center, Dept. of Plastic Surgery, New York, NY

Contact Email: banahef.hosseinian@nyumc.org

BACKGROUND & PURPOSE: The aim of this study was to compare 3D symmetry of the nose in patients with UCLP, subsequent to rotation advancement (Millard) without primary nasal repair and the NAM/Cutting primary nasal repair.

METHODS & DESCRIPTION: Operative Technique, focusing on operative technique, anatomic exposure, and clinical considerations.

RESULTS: We used the supra-brow approach in 14 patients to provide sufficient access for definitive neurosurgical management of an anterior cleft meningioma, three lateral frontal lobe meningioma, nine aneurysms of the anterior communicating artery, and an intra-ethmoidal arterio-venous malformation. Blood loss during exposure was minimal in all cases. There was no injury to the ophthalmic division of trigeminal nerve or frontal branch of facial nerve. Split calvarial grafts were used in nine of fourteen patients. At one year follow-up, all patients had excellent frontal contour, bony union, and an aesthetic scar.

CONCLUSIONS: A supra-brow approach limits extensive dissection and permits sufficient neurosurgical exposure to tumors and vascular anomalies of the entire anterior cranial fossa and ethmoid sinus.

THE DEVELOPMENT OF A NEW SCORING SYSTEM FOR THE ASSESSMENT OF NASOLABIAL APPEARANCE IN PATIENTS WITH NON-SYNDROMIC CLEFT LIP AND PALATE

David Mosmuller (1), Lisette Mennes (1), Charlotte Prahl (2), Melissa Disse (2), Gem Kramer (2), Frank Niessen (3), Peter Don Groot (1), (1) VU University Medical Center Amsterdam, Amsterdam, Noord-Holland, (2) Academic Center for Dentistry Amsterdam, Amsterdam, Noord-Holland, (3) VU University medical Center Amsterdam, Amsterdam, Netherlands

Contact Email: davidmosmuller@hotmail.com

BACKGROUND & PURPOSE: The surgical repair of the cleft lip is in most cases the first operation performed. An important goal of this operation is achieving symmetry and improvement of nasolabial appearance. In order to assess and compare the outcome of cleft lip and palate surgery it is essential to have a reliable scoring system. However, for the assessment of esthetic outcome of cleft-related facial deformities, a widely accepted, reliable scoring system is not available. One of the most frequently used scoring systems in literature is the system proposed by Asher-McDade et al., which uses frontal and lateral views (Asher-McDade et al., 1991). However this scoring system is complicated and time-consuming which results in a significant burden when assessing a large amount of photographs. Therefore over the last years a new scoring system was developed, which is reliable, easy to use and less time consuming.

METHODS & DESCRIPTION: From our database post-operative photographs from the last 32 years were selected. All photographs were taken at the age of six years old, all clefts were present as being left-sided and all photographs...
were cropped. From earlier ratings with the use of the Asher-McDade rating system 5 reference photographs for the nose were chosen and 5 photographs for the lip were chosen. The 10 selected photographs for the head were used to create a sliding photographic scale, making it possible to create different faces. For the nose, scores ranged from A – E and for the lip the scores ranged from 1 – 5, representing a very good to very poor appearance. Three plastic surgeons and three orthodontists used this new method of scoring to assess 62 photographs. Inter- and intraobserver scores were calculated by using the Intraclass Correlation Coefficient (ICC).

RESULTS: For the assessments 62 photographs were used (44 boys and 18 girls; 10 right-sided and 52 left-sided clefts). The inter-observer reliability was 0.62 for the nose and lip together (total score) obtained with the ICC. The inter-observer reliability for the nose and lip scored separately, were 0.59 and 0.61 respectively. For the total score a Cronbach’s alpha of 0.91 was calculated and a estimated reliability for three observers of 0.84. The intra-observer reliability for the total score varied from 0.59 to 0.75.

CONCLUSIONS: The presented new scoring system has an acceptable level of inter-observer reliability and an excellent level of internal consistency. The scoring system has a good reliability when used by three or more observers. The main advantage of the developed scoring system is that it’s easy to use and less time consuming in comparison with existing scoring systems.

INITIAL SEVERITY IN PATIENTS WITH CUCLP TREATED BY NAM AND TWO-STAGE SURGERY DOES NOT PREDICT NASOLABIAL AESTHETICS DURING PREADOLESCENCE

Supakit Peachtsitthertakkajon (1), Saran Worasakwatiphonphong (2), Karen Yokoo (3), Robert Menard (4), (1) Hayward Braces, Hayward, CA, (2) Naressan University, Mueang Phitsanulok, Phitsanulok, (3) Kaiser Permanente, Richmond, CA, (4) Northern California Kaiser Permanente Craniofacial Clinic, Santa Clara, CA

Contact Email: supakit@att.net

BACKGROUND & PURPOSE: Families are often counseled that a wider cleft may lead to a less aesthetic outcome. This notion, however, has not been substantiated. To date, few studies directly investigated correlation between the severity at birth and long-term nasal aesthetic outcomes. To address this, we analyzed correlation between the severity at birth in patients with non-syndromic CUCLP treated by NAM pre-surgically and nasolabial appearance during preadolescence.

METHODS & DESCRIPTION: Longitudinal records of 28 consecutive patients with CUCLP were examined. The initial severity was measured by anterior cleft width and cleft area on plaster models taken after birth. The width was measured from the widest points of the lateral and smallest alveolar segments. The cleft area was calculated from pictures taken directly from those models using Partometer software. Frontal and profile pictures taken in preadolescence (mean = 8 yrs) were rated twice using Asher-McDade scale by 3 craniofacial surgeons. All raters were experienced surgeons and did not perform surgeries on the subjects. All subjects were treated in one center with NAM pre-surgically, followed by lip repair and 1 or 2-stage palate repair. No surgical revision was performed on the subjects. Weighted kappa statistics and Intraclass correlation coefficients were calculated to demonstrate inter- and intra-rater reliability respectively. Spearman’s rank correlation tests were performed to determine correlation between each initial severity variable and nasolabial parameters. Multiple regression analyses were calculated to determine correlation between combined initial severity variables and nasolabial parameters.

RESULTS: The intra and inter-rater reliability tests showed moderate to very good results (κ = 0.57-0.94; ICC = 0.51-0.71). We did not find a significant correlation between the anterior cleft width and most nasolabial parameters (Mean aesthetic score p=0.29; Nasal deviation p=0.36; Nasal form p=0.03; Profile p=0.16). Only Vermillion shape (p=0.08, P-value = 0.01*) was found to be statistically significant. The initial cleft area does not statistically correlate with most nasolabial parameters (Mean aesthetic score p = 0.28; Nasal deviation p=-0.21; Profile p=-0.20, Vermillion shape p = 0.07). Only Nasal Form (p=-0.47, P-value = 0.01*) was found to be statistically significant. Multiple regression analyses revealed that the initial severity does not have statistical correlation with any nasolabial parameters (Mean aesthetic score R-square= 0.19; Nasal deviation R-square= 0.19; Nasal form R-square= 0.13; Profile R-square=0.24; Vermillion shape R-square= 0).

CONCLUSIONS: Results showed that the initial cleft severity does not predict nasolabial aesthetic outcomes. It is possible that the lack of correlation is specific to our treatment protocols. This study did not investigate effects of the protocols. Other variables including surgeon’s skill may also have a significant effect. Further studies are needed to address these.

97

PALATAL MEASUREMENTS PRE- AND POST-MODIFIED FURLOW REPAIR: ANALYSIS OF PALATAL LENGTHENING AND COMPARISON WITH GROWTH WITHIN THE CLEFT GROUP

Contact Email: anthony.taglienti@uphs.upenn.edu

BACKGROUND & PURPOSE: The modified Furlow double opposing z-plasty technique for cleft palate repair has repeatedly demonstrated low rates of oronasal fistula formation and low rates of velopharyngeal insufficiency. This technique has the theoretic advantage of lengthening the soft palate and also preventing secondary shortening due to straight-line scar contracture. The purpose of this study was to anatomically describe the range of palatal clefts encountered in clinical practice and to objectively quantify and compare intraoperative palatal lengthening between cleft types.

METHODS & DESCRIPTION: Intra-operative measurements were recorded for all patients undergoing modified Furlow cleft palate repair from 2/2011 to 9/2014. These included cleft length, widest cleft width and location, and cleft width at the hard-soft palate junction, as well as the soft palate length, total palate length, and velopharyngeal depth pre- and post- repair. The velopharyngeal depth was measured from the tip of the uvula to posterior pharyngeal wall and the total palate length was measured in two ways: along the base of the palate and along a straight line from the central alveolus to tip of the uvula. Additionally, patient demographics and Veau cleft type were recorded. Descriptive statistics and paired t-tests were conducted utilizing STATA.

RESULTS: 153 patients, 77 females and 76 males were included and the median age of repair was 7-240 months (range of 7-210 months). The most commonly encountered cleft types were Veau classification 3 (45 patients) followed by Veau classification 2 (43 patients). On average, the widest clefts were encountered with Veau classification 4 (12.1 mm), followed closely by Veau classification 3 (11.2 mm) and 2 (10.9mm); the widest cleft was nearly split at either the base of the uvula or the hard-soft palate junction for these cleft types. The mean curved post-operative total palate length increased by 3.5mm (p<0.0001); the mean straight post-operative total palate length increased by 6.7mm (p<0.0001); and the mean post-operative soft palate length increased by 6mm (p<0.0001). No difference was seen between genders. Additionally, the mean increase in total palatal length was statistically significant in all cleft types except Veau 4, which only trended towards significance.

CONCLUSIONS: This study describes significant palatal lengthening utilizing the modified Furlow cleft palate repair. Predicting palatal lengthening based on cleft and palatal dimensions may be a useful tool in anticipating surgical outcomes. Correlation with oronasal fistula rates and eventual speech outcomes will determine the significance of these findings in clinical practice.

THE EFFECT OF FOUR DIFFERENT TREATMENT PROTOCOLS ON CRANIO-MAXILLO-FACIAL GROWTH IN PATIENTS WITH UNILATERAL COMPLETE CLEFT LIP, PALATE AND ALVEOLAR

Xue Xu (1), Bing Shi (2), Qian Zheng (3). (1) Department of Cleft Lip and Palate Surgery, West China College of Stomatolog, Sichuan University, Chengdu, Sichuan Province, (2) Division of Oral and Maxillofacial Surgery, West China College of Stomatolog, Sichuan University, CHENGDU, SICHUAN, (3) West China College of Stomatolog, Sichuan University, Chengdu, Sichuan

Contact Email: xuxue20088x@163.com

BACKGROUND & PURPOSE: To minimize maxillary growth restriction and achieve normal speech, many different surgical treatment protocols were proposed to treat patients with a cleft. This study aimed to evaluate which treatment protocol did the least detrimental effect on cranio-maxillo-facial growth of patients with unilateral complete cleft lip, palate and alveolar (UCCLPAs) in their early mixed dentition. 56 patients with non-syndromic UCCLPAs were selected into this study. They were treated by four different surgical protocols, and all finished cleft lip repair at 6 to 12 months and cleft palate repair with sounderl surgical method at 12 to 24 months. 16 UCCLPAs were selected as group 1, who repaired cleft lip and hard palate with vomer flap simultaneously at 6 to 12 months, and soft cleft palate at 12 to 24 months. 14 UCCLPAs were selected as group 2, who repaired cleft lip at 6 to 12 months and cleft palate at 12 to 24 months. 11 UCCLPAs were selected as group 3, who received lip adhesion at 1 to 3 months, cleft lip repair and vomer...
THE USE AND LIMITATIONS OF INTERCENTER OUTCOMES COMPARISONS PROTOCOLS FOR INTERNAL AUDITS AND QUALITY IMPROVEMENT

Patricia Glick (1), Stephen Beals (1), Gunvorb Semb (2), Ross Long, Jr (3), Kathleen Russell (4), Ronald Reed Hathaway (5), John Daskalogiannakis (6), Andrea Smith (3), Thomas Sitzman (7), William Shaw (2). (1) Barrow Cleft And Craniofacial Center, Phoenix, AZ, (2) University of Manchester, Manchester, United Kingdom, (3) Lancaster Cleft Palate Clinic, Lancashire, PA, (4) Dalhousie University/IWK Health Centre, Halifax, NS, (5) Peyton Manning Children’s Hospital, Zonesville, IN, (6) The Hospital for Sick Children, Toronto, Ontario, (7) Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

Contact Email: patricia.glick@dignityhealth.org

BACKGROUND & PURPOSE: Intercenter comparisons are effective to identify treatment outcomes associated with varied protocols. An added benefit may be the use of the standards/protocols for these comparisons for individual centers to audit internally their own outcomes for of quality improvement. The purpose of this investigation was to determine the value and limitations of current intercenter outcomes comparisons methods for intra-center audits.

METHODS & DESCRIPTION: 7 major cleft centers participated in a comparison of treatment outcomes. Patients with UCLP were rated for dental arch relationships in primary (n=148) and mixed (n=157) dentitions using the Goslon Yardstick, and for nasolabial appearance at mean age 6yrs (n=166) using Asher-McDade method. Weighted Kappa was used for inter- and intra-rater reliabilities and Kruskal-Wallis was used for significant differences. This was Ctr1’s (n=65) first intercenter comparison to explore the effects of its varied infant management protocol (+/- NAM/O, +/-GPP) on its diverse patient population; Hispanic (n=35), Native American (n=9) and Caucasian (n=13), mixed (n=8). The other centers participated in previous intercenter comparisons with a range of outcomes from varied infant management protocols. Guidelines for such comparisons required Caucasian samples. Comparisons of the pooled multi-racial/ethnic Ctr 1 sample with the others, revealed several significant differences including less favorable dental arch relationships. The scores for Ctr 1’s sample were then assessed internally with an intra-center comparison of outcomes by racial/ethnic groups and also by treatment protocol to determine if race/ethnicity or protocol contributed to the final pooled outcome.

RESULTS: For patients treated with GPP+NAM/O, the mean dental arch relationship scores in primary (mean 3.84) and mixed (mean=3.91) dentitions were not significantly different from the subset of patients treated without (mean=3.90 and 3.75 respectively) and the total pooled sampled (mean=3.87 and 3.84). For racial/ethnic subgroups there was a tendency for better scores in the Caucasian group but no significant differences between subgroups (mean= Hispanic-4.02, Caucasian-3.70, Native American-3.94) and the total pooled sample. For nasolabial rating there were no significant differences between ratings for treatment or racial/ethnic subgroups compared to each other and to the pooled center averages.

CONCLUSIONS: The overall Ctr 1 results with racial/ethnic subgroups pooled seemed to be the same regardless of the mixed racial/ethnic sample. However, establishing adequate sample sizes for intercenter comparisons with control of race/ethnicity, for many centers will continue to be an obstacle. Pooling of these groups would enable more centers to participate, but whether different racial/ethnic distribution affects comparisons needs to be determined. For protocol differences within centers, these studies allow for internal assessment of differing protocols.
RESULTS: The flow rates of the three current specialized bottles listed previously (10, 14 and 7 mL/min respectively) were consistent with the slow setting (6 month) of the TT (8 mL/min), N.O. (13 mL/min) and AC bottle (15 mL/min). However, the flows of the specialized bottles could not reach the flow rates of the medium (3 months), 37 mL/min, and fast (6+ month), 61 mL/min, flow setting of the TT bottle. Our three proposed feeding systems achieved approximately similar flow rates of the three flow settings of the TT bottle (15, 38, and 59 mL/min respectively).

CONCLUSIONS: Current specialized bottle designs may be lacking in providing sufficient flow rates for infants three months and older. The new feeding system proposed here provides improvement in varying the flow rate through three different age settings, which benefits children trying to obtain nutrition needed for growth. Future research may demonstrate the nipple position inside the oral cavity of children with CP, and from that, suitable changes in the nipple shape will be suggested for different cleft types.

PREVALENCE OF HEARING LOSS IN CHILDREN WITH CLEFT AND EFFECT OF DIFFERENT AUDIOLOGICAL GUIDELINES ON THE EPIDEMIOLOGY

Asmat Din (1), Anand Muddalal (2), Craig Napier (2), Mark Devlin (2), Arup Ray (2), Hafiz Sadiq (2), Craig Russell (2), David Wynne (2), (1) Canniesburn Plastic Surgery Unit, Glasgow, Scotland, (2) Royal Hospital for Sick Children (Yorkhill), Glasgow, United Kingdom

Contact Email: asmatdin@hotmail.com

BACKGROUND & PURPOSE: Describe the prevalence of hearing loss in a population of children with cleft • Demonstrate the need to standardize the audiological guidelines of various scientific societies.

METHODS & DESCRIPTION: A retrospective chart review was performed on all patients who underwent audiological assessment were selected for the study. The data was analyzed for differences in prevalence and severity of hearing impairment. This was compared with the published audiological guidelines for hearing impairment thresholds by various scientific societies (WHO, BSA, American speech language and hearing association, Clinical Standards Advisory Group etc).

RESULTS: Data was analyzed using minitab15 statistical software to investigate differences in the apparent ‘epidemiology’ of hearing loss as described by five different published UK and International guidelines. Chi square analysis was used to compare hearing impairment vs. age based on British Society of Audiology guidelines to find the prevalence of hearing loss in children with cleft. The prevalence (p<0.001) and severity (p<0.001) of hearing impairment in the cohort examined varies significantly dependent upon published thresholds used. Prevalence by sex also varies significantly for all thresholds apart from GG Browning (p=0.02). Full age and sex specific data will be presented for all thresholds.

CONCLUSIONS: Hearing impairment in children with cleft is commonly encountered in clinical practice; this study highlights the need for a concordance on hearing thresholds by various scientific societies to facilitate uniformity in the representing the problem in this subgroup of patients. This not only means that patients and their parents may be inappropriately reassured or even denied helpful intervention; it inhibits discussion between clinicians, across specialities, national borders and continents. Internationally standardized guidelines would go a long way to support research in the field and therefore facilitate care in an evidence based manner.

HOW DOES DYNAMIC MRI COMPARE TO NASENDOSCOPY FOR THE STUDY OF VELOPHARYNGEAL FUNCTION?

Jamie Perry (1), Graham Schenck (1), Lakshmi Kollara (1), Kazlin Mason (1), David Kuehn (2), Bradley Sutton (3). (1) East Carolina University, Greenville, NC, (2) University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, (3) University of Illinois, Urbana-Champaign, Urbana, IL

Contact Email: perryja@ecu.edu

BACKGROUND & PURPOSE: Technological advances are bringing MRI closer to clinical implementation; however, the value of dynamic MRI as compared to imaging methods such as nasendoscopy is not well understood. Velopharyngeal (VP) imaging and perceptual assessment each contribute significantly to understanding the cause of VPI and identifying the optimal treatment. It is not clear, however, what clinical information dynamic MRI can provide and how it may contribute to understanding the complex nature of VP function. Additionally, it is unknown how such information relates to more common imaging methods such as nasendoscopy. The purpose of this study is to determine the potential clinical utility of dynamic MRI in the treatment of VP dysfunction as compared to nasendoscopy. Advantages and disadvantages of both imaging methods are discussed in detail.

METHODS & DESCRIPTION: Seven adults with normal VP and craniofacial anatomy were assessed using dynamic MRI and nasendoscopy during the production of “ampa.” Dynamic speech assessment was obtained using a fast-gradient echo FLASH multi-shot spiral technique to acquire 15.8 fps of the oblique coronal image plane sampled directly in the plane of VP closure. Frame-by-frame analysis of the percent change in lateral wall movement and anterior-to-posterior VP movement were calculated across both imaging methods during the same speech production.

RESULTS: Changes in lateral pharyngeal wall movement proved to be reliable and comparable between nasendoscopy and dynamic MRI. Anterior-to-posterior oral changes, however, were not reliably obtained across both procedures. The portal closure and closure type were identified consistently across subjects. Findings suggest anterior-to-posterior measures between imaging methods are not comparable. This may be due in part to the depth distortion effect present in nasendoscopy and an inability to find a reliable posterior wall reference point. Additionally, participant and scope movement likely limit the reproducibility of any quantifiable findings. Alternatively, lower spatial and temporal resolution in dynamic MRI may account for poor reliability in the same variable.

CONCLUSIONS: The ideal imaging should be noninvasive, repeatable, and reliable (Beer et al., 2004). MRI is non-invasive with a view of the exact plane of closure without the depth-distortion effect commonly seen in nasendoscopy. Interpretations based on nasendoscopy are limited to inferences of muscle function based on gross positional changes of the velum. MRI offers a wider view of the pharyngeal area (Noy et al., 2000; Shingawaga et al., 2005) and provides valuable information about the internal VP muscles. Results from the present study, elucidate the need for technological advances.
in dynamic acquisition to increase imaging speed and resolution prior to clinical implementation. Continued research is also needed to provide details of how knowledge of the internal muscularature can improve and optimize patient care.

105 EXTRAVELAR AND INTRAVELAR MORPHOLOGY OF THE LEVATOR VELI PALATINI: IMPLICATIONS FOR CLEFT PALATE SPEECH

Lakshmi Kollara (1), Jamie Perry (2), (1) East Carolina University, Greenville, NC, (2) East Carolina University, Grimesland, NC

Contact Email: kollarasunil111@student.ecu.edu

BACKGROUND & PURPOSE: The levator veli palatini (levator) is the primary muscle responsible for elevation of the velum. MRI is the only imaging modality that enables in vivo visualization of the levator muscle as well as the extravelar (EV) and intravelar (IV) segments that constitute this muscle. Perry et al. (2013) observed the portion of the levator muscle contained within the velum (IV segment) to show variability across subjects, whereas the EV segment demonstrated significant consistency between subjects. These findings suggest that the IV segment morphology may be less relevant to levator contraction for velopharyngeal closure compared to that of the EV segment. However, this study was limited to static observations of adult subjects. There are no reported data on how the EV and IV segments of the levator muscle contract and contribute to muscle kinetics during a dynamic activity such as speech. The purpose of this study was to examine the contraction of the EV and IV segments of the levator muscle using MRI during sustained phoneme production in children between 4-8 years of age with normal velopharyngeal anatomy and children with repaired cleft palate.

METHODS & DESCRIPTION: 20 children with normal velopharyngeal anatomy and 5 children with repaired cleft palate between 4-8 years of age were scanned using an established child-friendly MRI scanning protocol (Kollara & Perry, 2014). A high resolution, T1-weighted turbo-spin-echo (TSE) 3D anatomical scan called SENSE was utilized. Measurements were made to: 1. Determine the percent contribution of the EV and IV segments to the total levator muscle length, at rest. 2. Determine contraction percentages of the EV and IV segments and its contribution to the total levator muscle contraction. RESULTS: All MRI data has been collected across all subjects. Preliminary analyses on normative data demonstrated the EV segment contributes to 70.8% to the total levator length and the IV segment accounted for 29.2% of the levator muscle length, at rest. The percent contribution of the EV and IV segments differed across phonemes. For example, during production of /s/, the IV segment demonstrated greater contribution to the overall levator muscle contraction as compared to the IV segment. This may be related to increased velar height as evidenced by mid sagittal MRI. Statistical analyses on subjects with repaired cleft palate are under way and will be completed by November 2014.

CONCLUSIONS: Perry et al. (2013) hypothesized that the force is greatest in the EV segment. Our preliminary data suggests that the levator muscle contracts differently across different phonetic contexts. These findings are pertinent to cleft palate surgery where each surgery results in a different IV muscle configuration.

106 THE IMPACT OF OROFACIAL MYOFUNCTIONAL THERAPY ON THE REESTABLISHMENT OF NASAL BREATHING AND THE STABILITY OF ORTHODONTIC TREATMENT. TONGUE THRUST: TO TREAT OR NOT TO TREAT?

Alia Sorokin (1), Natasha Cassir (2), Eve Desplats (3), Neely Huyynn (2). (1) Sainte-Justine Hospital Center, Montreal, Quebec, (2) Clinique d’orthodontie, Universite de Montréal, Montreal, Quebec, (3) Centre de recherche du CHU Sainte Justine, Montreal, Quebec

Contact Email: aliasorokina@hotmail.com

BACKGROUND & PURPOSE: It is commonly believed that the tongue thrust (the presence of the tongue between the upper and lower incisors during swallowing) is a causal factor in dental malocclusion. The idea that the tongue “pushes” against the incisors during swallowing and thus moves the teeth has led oro-facial myofunctional therapists to treat the atypical swallowing as part of an extensive pre-orthodontic myofunctional treatment. In reality, the factors with a potential to cause a malocclusion are in fact the continuous forces of the tongue against the teeth at rest as opposed to the brief but numerous stronger forces of the tongue during swallowing (Proft, 1977). Myofunctional treatment should then focus on establishing nasal breathing by solely normalizing tongue position and lip closure at rest. The current study investigates the efficacy of myofunctional therapy and its orthodontic short and long-term outcomes. It aims to answer the following research questions: Is treating a low tongue position and lip closure at rest sufficient for orthodontic short and long-term outcomes? Does treating tongue thrust along with an incorrect tongue position help achieve and maintain higher outcomes of the myofunctional and orthodontic treatment?

METHODS & DESCRIPTION: This is a prospective randomized single-blind controlled clinical trial. Seventy subjects aged 4-14 years with a tongue thrust and a low tongue posture will be recruited and assessed for nasal or mouth respiration, swallowing pattern and for tongue resting posture. Then they will be randomized to receive either a complete therapy (10 sessions) to correct their swallowing pattern and tongue posture (n=35), or to modify their tongue posture alone (2 sessions) (n=35). Both groups will be followed 3 months following treatment completion (T1) for nasal or mouth respiration, swallowing pattern and for tongue resting posture. Inter-rater validity and reliability will be assessed using a second blind evaluator. For the longitudinal control, these patients will complete a second follow-up appointment (T2) at the end of their orthodontic treatment to assess the long-term impact of the two types of oro-facial myofunctional therapies on the orthodontic treatment success.

RESULTS: A Preliminary ANOVA analysis (N=24) revealed no significant differences between the two groups pre and post treatment. The difference between the two visits was significant (p=0.014). Subjects in both groups have improved regardless of the type of treatment they received. Furthermore, significant changes in tongue posture and type of respiration were observed after 3 months post-treatment in both groups. Complete results will be presented at the Congress.

CONCLUSIONS: The preliminary results suggest that treatment outcomes are similar when treating tongue-lip posture at rest along with with tongue thrust, or tongue-lip posture at rest alone. Treating tongue thrust may not be a necessary component of an efficient oro-facial myofunctional treatment program to reestablish nasal breathing.

107 COMPARISON OF CULCP NASOLABIAL APPEARANCE BETWEEN 4 CENTERS WITH INFANT MANAGEMENT PROTOCOLS +/- USE OF NAM, GPP, OR INFANT ORTHODENTICS

Patricia Glick (1), Stephen Beals (1), Thomas Sitzman (2), Gunvor Semb (3), John Daskalogiannakis (4), Ronald Reed Hathaway (5), Kathleen Russell (6), Ross Long, Jr (7), Jennifer Fessler (7), Cristiane Muller (8), (1) Barrow Cleft And Craniofacial Center, Phoenix, AZ, (2) Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, (3) University of Manchester, Manchester, United Kingdom, (4) The Hospital for Sick Children, Toronto, Ontario, (5) Peyton Manning Children’s Hospital, Zionsville, IN, (6) Dalhousie University/IWK Health Centre, Halifax, NS, (7) Lancaster Cleft Palate Clinic, Lancaster, PA, (8) Barrow Cleft and Craniofacial Center, Phoenix, AZ

Contact Email: patricia.glick@dignityhealth.org

BACKGROUND & PURPOSE: The benefits of additional features of infant management protocols such as NAM +/- GPP and IO +/- primary bone grafting remain controversial. This study compared CULCP nasolabial appearance at centers using a range of such infant management protocols.

METHODS & DESCRIPTION: Cropped photographs of 166 consecutively treated patients with CULCP (mean age 6yrs 0 mos) were blindly rated by 8 calibrated and experienced raters (6 orthodontists, 2 surgeons) using the Q-sort modification of the Asher-McDade rating system and a 5-7 year old Nasolabial (NL) Yardstick. In addition to lip and palate repair, the protocol at Center 1 (n=49) included use of NAM or IO +/- GPP; Center 2 (n=39) protocol was limited to lip and palate repair with no secondary revisions; Center 3 (n=33) used NAM without GPP; and Center 4 (n=40) used lip and palate repair with secondary revisions in some patients prior to the assessment. Judges were given cards with frontal and profile photographs of each patient and rated them on a scale of 1-5 for three features (NL profile, frontal, and vermilion border) using the Q-sort method. Q-sort utilizes placement of the cards into categories sequentially up to the 5 categories of the scale. The ratings were done twice with all 16 scores for each patient averaged for each of the three features. Inter- and intra-rater reliabilities were tested using Weighted Kappa. Medians and SD’s were calculated for each group and tested statistically using the Kruskal-Wallis test setting Family Alpha at .06 with Bonferroni individual Alpha of .01.

RESULTS: Intra-rater reliability scores were good (vermilion border mean=.772, range=.742-.833; NL frontal mean=.682, range=.525-.828; NL profile mean=.720, range=.571-.885). Inter-rater reliability scores were fairly good (vermilion border mean=.700, range=.662-.739; NL frontal mean=.547, range=.510-.690; NL profile mean=.512, range=.440-.556). Kruskal-Wallis multiple comparisons identified significant differences in NL profile view between Ctr 3 (mean=3.39, SD=0.792), and Ctr 4 (mean=2.66, SD=.759). For vermilion border, Ctr 3 (mean=3.74, SD=.765) was significantly different from Ctr 2 (mean=3.04, SD=.772) and Ctr 4 (mean=3.75). There were no significant differences between centers in the NL frontal view and when all views were combined for a cumulative score. There was a trend for the
DYNAMIC CLEFT INFANT MAXILLARY ORTHOPEDICS AND PERIOSTEOPLASTY: A 25 YEAR STUDY
Frederick Lukash (1), Michael Schwartz (2), Jessica Korsh (1), Katelin O’Brien (1), Kristen Aliano (1). (1) Long Island Plastic Surgical Group, Garden City, NY, (2) New York Center for Orthognathic and Maxillofacial Surgery, Lake Success, New York

CONTACT EMAIL: flukash@lipsg.com

BACKGROUND & PURPOSE: In 1990 Drs. Millard and Latham published an early experience with Dynamic Maxillary Appliance (DMA) and perioseptoplasty in patients with cleft lip and palates. This approach is based on the concept of “normal to normal and keep it there,” with the goal to align the alveolar segments, close the oral-nasal fistula and provide better facial balance with tension free closures. Opponents to this approach argue that it increases the incidence of oral fistula, retardation and creates orthodontic cripples. In 1998, the senior authors reported a 13-year longitudinal study on 35 unilateral and 10 bilateral complete clefts with radiographs, cephalometrics, and serial occlusograms with very encouraging results structurally and psychologically. Dynamic Cleft Maxillary Orthopedics and Perioseptoplasty: Benefit or Detriment? Annals of Plastic Surgery 1998 40: 321-327. Twenty five of these patients were monitored and treated into adulthood. Our research demonstrates that the DMA concept should be strongly considered as a program in treating patients with complete clefts.

METHODS & DESCRIPTION: This study continued the principles followed in format of the initial paper.Patients were augmented to the need and the amount of bone required to consolidate the maxillae, the complexity of orthodontics, the need for orthognathic surgery and the number of interim surgeries performed throughout the growth period. The same team of plastic surgeon, orthodontist, and maxillofacial surgeon rendered care throughout this study. A psychosocial questionnaire was administered to the parents of the cleft patients to evaluate satisfaction with the early active intervention and early normalization. RESULTS: Early intervention with maxillary orthopedics and complete closure of the primary palate at 3 months, eliminated the oral-nasal fistula, and provided excellent facial balance. Alignment of the cleft segments allowed for easier closure of the secondary palate and eliminated velo-pharyngeal insufficiency procedures. Bone was demonstrated in the cleft segments, and for those needing additional grafting, the requirements were much less. Consolidation of the maxillae was more successful because the bone was placed in a healthy recipient bed. Anterior and lateral cross-bites were dental, not skeletal, and were managed with orthodontics. Orthognathic procedures were decreased (0/21 unilateral, 2/4 bilateral) and when performed were easier because of the unification of the upper jaws. Serial photographs and occlusograms, as well as interval cephalometrics will be presented to demonstrate the positive outcomes of this study and technique. The parental survey further reinforces the psychosocial well being that accompanied early intervention, especially with family and peer bonding and with feeding without nasal escape.

CONCLUSIONS: We can conclude that we did no harm and that the DMA concept should be strongly considered as a treatment for patients with clefts. Early normalization was beneficial for the parents.

ORTHODONTIC MANAGEMENT OF ANTERIOR MAXILLARY DISTRACTION IN CLEFT MAXILLA
Siddhartha Raghav (1), Sehzana Fathima (2), Akhter Hussain (2), (1) Yenepoya University, Mangalore, Karnataka, (2) Yenepoya University, Mangalore, Karnataka

CONTACT EMAIL: siddrrr@yahoo.co.in

BACKGROUND & PURPOSE: Distraction Osteogenesis (DO) techniques have become increasingly popular in the craniofacial region and large numbers of studies have reported successful advancement of jaw bones with extra oral distraction devices. However, the potential for complications to craniofacial structures and social problems associated with extra oral distraction, a better alternative would be internal and intraoral devices. Here, we present cases treated with tooth borne palatal distractor along with its orthodontic management and a comparison study of the distraction needed for a patient based on cephalometric values and examination.

METHODS & DESCRIPTION: Patients under age group 18 to 22 years with Maxillary hypoplasia secondary to cleft lip and palate were chosen for the study. Preoperative profile photographs, orthopantomogram and lateral cephalogram and study models were taken. Surgical technique: Osteotomy cut was made above the apices of the maxillary teeth from the pyriform rim to the predetermined distraction site.. A vertical interdental osteotomy was initially made through the buccal cortex at the predetermined site.. A vertical interdental osteotomy was initially made through the buccal cortex at the predetermined site, and then deepened by a osteotome.. The anterior maxilla was then down fractured and slightly mobilized, while the palatal mucosal pedicle was maintained. The prefabricated modified Hyrax appliance is then fitted into the maxilla... Modified hyrax orthodontic appliance is a tooth borne custom made appliance, that produces anterior movement of maxilla. It has 4 arms, the anterior arms are soldered to the orthodontic bands of the first or second premolars of either side, and 2 posterior arms are soldered to either the first or second molars. The appliance was activated after a latency period of 1 week at a rate of 1 mm per day, using 5 rhythms, 3 in the morning and 2 in the evening. Activation was carried out until the desired clinical results are achieved. The appliance was then left inactive for a consolidation period of 3 months. Post distraction radiographs and photographs are taken. Cephalometric analysis done. Comparative study – was done on the distraction procedure based on cephalometric values and clinical examination of the patient is carried out and analyzed.

RESULTS: There was marked changes in the facial profile with positive overjet relationship in the patient after distraction osteogenesis... Statistical analysis was done using SPSS software. In compliance with the paired T test for comparison of the distraction required for clinical and cephalometric...
analysis, the outcome reveals that the distraction required in accordance to clinical evaluation is significantly greater than the distraction required as per cephalometric analysis.

CONCLUSIONS: • Tooth borne distractors are effective alternative technique for treating patients with cleft in order to improve the skeletal dysplasia. • Based on statistical study the amount of distraction pertaining to clinical evaluation is significantly greater than those pertaining to cephalometric analysis.

DEVELOPMENT OF THE FIRST PERMANENT MANDIBULAR MOLAR IN YOUNG CHILDREN WITH UNILATERAL COMPLETE CLEFT LIP AND PALATE (UCCLP)

Nuno V. Hermann (1), Sven Kreiborg (2), Tron A. Darvann (3), (1) School of Dentistry, University of Copenhagen, Copenhagen, Denmark, (2) Dept. of Pediatric Dentistry and Clinical Genetics, School of Dentistry, University of Copenhagen, Copenhagen, Denmark, (3) 3D Craniofacial Image Research Laboratory (Uni. Copenhagen & Rigshospital & Tech. Uni. Denmark), Copenhagen, Denmark

Contact Email: nuno@sund.ku.dk

BACKGROUND & PURPOSE: Studies have shown that the facial profile of children with cleft palate with/without a cleft lip is characterized by a short mandible. In addition, previous studies have shown that the development of the first permanent mandibular molar (M1inf.) is deviant in children with isolated cleft palate (CP) both in terms of delayed maturation and reduced tooth size. Furthermore, a significant correlation between severity of CP and delay of M1inf. maturation has been found. The aim of the present study was to test if similar deviations are present in children with Unilateral Complete Cleft Lip and Palate (UCCLP). The following hypotheses were tested: (1) M1inf. is delayed in maturation in children with UCCLP. (2) M1inf. is reduced in size in children with UCCLP. (3) The size of M1inf. is correlated with the size of the mandible.

METHODS & DESCRIPTION: Material: Study group: 47 consecutive children with UCCLP at 2 and 22 months. Control group: 44 consecutive children with Unilateral incomplete Cleft Lip (UICL) at 22 months. METHODS: In lateral cephalometric x-rays, the width of the M1inf. follicle (WF), as well as total mandibular length (cd-pgn) (ML) was measured at 2 and 22 months of age. The width of the tooth (WT) was measured only at 22 months of age. Follicle maturation (M) was assessed according to Haavikko. Intra-rater error was determined by duplicate measurements in 30 subjects. Significance of difference in M was determined using Mantel-Haenszel test. Pearson’s correlation coefficient R was used to describe the relationship between follicle width and tooth width, respectively, and mandibular length. Differences between the mean WF and WT between groups were tested using Student’s t-test. Differences in mean growth between groups were tested using ANCOVA.

RESULTS: Intra-rater errors: M kappa = 0.87 (excellent agreement); WF and WT coefficient of variation = 1.8%, Dahlberg’s d (t) = 0.2 mm. Follicle maturation was significantly delayed in UCCLP at both 2 (p=0.0006) and 22 months of age (p=0.003). Mean WF (UICL) at 2/22 months: 10.9±0.6mm / 13.5±0.8mm; (UCCLP) at 2/22 months: 9.9±0.7mm / 13.0±0.6mm. Correlations between WF / and ML were positive but small for both groups and ages. Correlations between WT and ML were positive but small for both groups. Differences between WF were significant at both ages (p < 0.001) and growth was significantly larger in UCCLP (p = 0.02). Differences between WT means were significant (p < 0.001). However, after correcting for mandibular size (corresponding to dividing WF and WT by ML) neither differences in mean values of WF, WT nor growth were statistically significant (p > 0.09).

CONCLUSIONS: The maturation of the M1inf. in young children with UCCLP was delayed compared to controls. The size of the tooth and its follicle is, in both UCCLP and controls, related to mandibular size, i.e. small teeth are located in small mandibles.

DENTAL MATURATION OF CHILDREN WITH UNILATERAL CLEFT LIP AND PALATE

Elaine Tan (1), Mimi Yow (1), Meaw Charm Kuek (2), Hung Chew Wong (3), (1) National Dental Centre of Singapore, Singapore, Singapore, (2) National Dental Centre, Singapore, Singapore, (3) National University of Singapore, Singapore, Singapore

Contact Email: elaine.tan11y@ndcs.com.sg

BACKGROUND & PURPOSE: Cleft lip and palate (CLP) is a craniofacial birth defect with a spectrum of phenotypes commonly associated with dental anomalies. Reports also suggest that children with CLP have delayed dental development and asymmetrical timing of tooth-pair formation. The aim of this study is to investigate the timing and symmetry of dental maturation of permanent dentition in children with unilateral CLP (UCLP) and compare the findings with children without CLP.

METHODS & DESCRIPTION: Panoramic radiographs of 55 subjects with UCLP taken at 5-9 years old (mean 6.64 ± 0.90 years) and at an older age of 9-13 years (mean 11.92 ± 1.6 years) were studied. These radiographs were investigated using the Demirjian’s method (1973) and compared with 55 control subjects to determine if there were any differences in dental maturation with age.

RESULTS: Children with UCLP in the younger age group were delayed in dental maturation compared to children without CLP by a mean of 0.55 ± 0.75 year and this delay was found to be statistically significant (p<0.001). There was no statistically significant difference in the dental maturation of children in the older age group with UCLP and children without CLP (p=0.744). The group with UCLP had significantly higher risk of asymmetrically developing tooth pairs than the control group at the both younger and older age groups (p<0.001).

CONCLUSIONS: Children with CLP demonstrated asymmetric and delayed dental maturation when compared to children with no CLP. The delay in dental maturation was not sustained at an older age.

POOLED ANALYSIS OF ORTHODONTIC OUTCOMES AFTER ALVEOLAR BONE GRAFTING – A SYSTEMATIC REVIEW

Hannah Polus (1), Thomas Gildea (1), Alexander Lin (1), (1) Saint Louis University School of Medicine, St. Louis, MO

Contact Email: polus@slu.edu

BACKGROUND & PURPOSE: There is disparate literature regarding the orthodontic outcomes after alveolar bone grafting (ABG) in children with cleft lip palate. Although it is understood that dental goals of ABG include eruption and movement of teeth, our aim was to perform a systematic review of the literature to establish historical baselines.

METHODS & DESCRIPTION: Searches were conducted on June 4, 2014 on PubMed, Scopus, and Cochrane. Search terms used were: tooth movement AND (cleft palate OR cleft lip OR bone graft OR alveolar bone graft). Duplicates, case series with less than 5 subjects, and literature reviews were eliminated. Papers must study patients with clefts and evaluate some orthodontic outcomes to be included. Pooled analysis was performed with available data.

RESULTS: After duplicates were removed, 237 articles had abstracts examined, resulting in 147 articles where full-text was obtained for review. 17 articles fulfilled our criteria. 12 papers contained data on dental eruption, and 9 contained data that could be analyzed. Pooled analysis showed 207 subjects with 247 cleft sites, of which 145/247 (59%) had normal eruption, 78/247 (32%) required surgical or orthodontic extraction, 9/247 (4%) remained unerupted, and 15/247 (6%) had unknown outcomes. 6 papers contained orthodontic horizontal movement data, of which 2 contained facial, buccal, and palatal movement. Pooled analysis showed 51 patients with 61 cleft-side canines, of which 20/61 had mean facial movement of 2.5 mm, 36/61 had mean buccal movement of 7.17 mm, and 5/61 had mean palatal movement of 2.4 mm. The other 4 evaluated dental arch closure, and pooled analysis showed 233 patients with 241 clefts, of which successful closure of the gap in the dental arch occurred in 136/241 (56%). 3 papers contained data on root development. Pooled analysis showed 127 patients with 156 cleft teeth, of which 51/156 (33%) showed complete root development and 101/156 (65%) showed partial root development. 4 papers contained data on incisor tipping, and 2 contained data that could be analyzed. Pooled analysis showed 22 patients, with mean incisor proclination increasing from 96.6 degrees to 103.8 degrees. 2 papers contained cephalometric data related to dental position only, and pooled analysis showed 22 patients in which the average overjet improved from -2.83 mm to 2.53 mm.

CONCLUSIONS: The orthodontic outcomes of children with alveolar clefts are critical to restoring normal function. This systematic review looked at literature with available orthodontic outcomes for pooled analysis. Overall, we found a combined rate of eruption success 59% and need for surgical assistance 32%, successful closure of dental gap arch 56%, partial or complete root development 97%, dental tipping increasing from 96.6 degrees to 103.8 degrees, and dental overjet changing from -2.83 mm to 2.53 mm. Most of these results appear satisfactory, with the lowest being eruption and gap closure, which should remain focus areas for improvement in alveolar cleft management.
PATIENT SPECIFIC BILAMINAR RESORBABLE MESH WITH BMP-2 PROMOTES CRANIAL VAULT HEALING IN CHILDREN

David Hindin (1), Wellington Davis (2), Prithvi Narayan (2), Justine Lee (3), Xilin Jing (1), James Bradley (1). (1) Temple University Hospital, Philadelphia, PA, (2) St. Christopher's Hospital for Children, Philadelphia, PA, (3) UCLA, Los Angeles, CA

Contact Email: David.Hindin@gmail.com

BACKGROUND & PURPOSE: Immature dura in children has a greater osteogenic potential than mature dura in adults, making problematic large cranial (skull) defects less likely. However, when such large cranial defects do occur in children, fewer reconstructive options are available in comparison to adults (titanium mesh, patient-specific implants, cryopreserved bone). For these challenges, we studied a novel technique of a patient-specific, bilaminar resorbable mesh utilizing BMP-2 as a strategy to provide initial structural support for the skull, followed by bone healing, without permanent foreign body problems.

METHODS & DESCRIPTION: Outcomes of consecutive children (less than 12 years of age) with long-standing critical-sized cranial vault defects were studied (n=21). Our technique of patient-specific, bilaminar resorbable mesh with BMP-2 was compared to previously used techniques: bone substitutes (calcium phosphates, hydroxyapatite), cranial bone grafts (isolated bone or bone mill granules). We evaluated operative times, blood loss, complications, reoperations, and bone healing (3D CT scans) after 6 and 12 months.

RESULTS: Defects in the groups were similar overall, (avg. 82cm2, range 55-135cm2), with the exception of the autologous bone graft group (avg. 64cm2). Autologous bone grafting had the longest operative time (1.5 times longer than the BMP-2 group) and the greatest blood loss (1.6 times greater than the BMP-2 construct group). Perioperative complications and reoperation rates were highest in the bone substitute and titanium mesh groups (46% and 38%) in comparison to the autologous and BMP-2 construct groups (12% and 5%). The bone substitution group had difficulties with wound breakdown and implant exposure. Bone healing was superior in the BMP-construct group (80% at 6 months and 95% at 12 months). Autologous bone had good healing (74%) in the smaller defects only (~<50cm2). There was minimal to no healing in the bone substitution group. BMP-2 provides a novel option for reconstruction with minimal complications compared to existing alternative methods.

115

BIOPATTERNED RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 DOES NOT INDUCE PANSYNOSTOSIS OR GROWTH RESTRICTION IN THE IMMATURE CRANIOFACIAL SKELETON

Sameer Shakir (1), Osama Basri (2), James Cray (2), Sanjay Naran (1), Darren Smith (3), Zoe Maclsaac (4), Seth Weinberg (1), Mark Mooney (5), Joseph Losee (6), Greg Cooper (1). (1) University of Pittsburgh, Pittsburgh, PA, (2) Medical University of South Carolina, Charleston, SC, (3) The Hospital for Sick Children, Toronto, Ontario, (4) University of Pittsburgh Medical Center, Pittsburgh, PA, (5) University of Pittsburgh, Pittsburgh, PA, (6) University of Pittsburgh Medical Center, Pittsburgh, PA

Contact Email: sas171@pitt.edu

BACKGROUND & PURPOSE: When other therapeutic options have failed, rhBMP-2 may help to heal problematic calvarial defects. While rhBMP-2 remains a potent osteoinductive agent, current off-label applications normally far supersede physiologic concentrations and likely contribute to previously reported side effects including ectopic bone formation, inflammation, and cancer. Furthermore, the efficacy of rhBMP-2 therapy in the skeletally immature pediatric patient with a nonhealing calvarial defect remains unknown. The study aimed to compare the effects of rhBMP-2 dose on cranial growth in a juvenile New Zealand White rabbit strip suturotomy model with the hypothesis that higher dose rhBMP-2 will negatively affect cranial growth.

METHODS & DESCRIPTION: Twenty juvenile New Zealand White rabbits underwent bicoronal strip suturotomies treated with 0.4-mg/mL rhBMP-2/absorbable collagen sponge (n=7), 100-ug/mL biopatterned rhBMP-2/acellular dermal matrix (n=6), or left empty (n=7). Amalgam markers were placed at suture confluences to radiographically track suture separation and cranial growth at 10, 25, and 42 days of age. Means and standard deviations for craniofacial growth variables were calculated and compared using two-way ANOVA statistical analysis. Cranial sutures were qualitatively assessed using micro–computed tomographic (μCT) scanning at 42 days postoperatively.

RESULTS: Treatment with 0.4mg/mL rhBMP-2 resulted in significant growth changes and fusion of the coronal sutures bilaterally, anterior sagittal suture, and frontonasal suture by cephalometric analyses at 42 days postoperatively (p<0.05). Growth changes appeared greatest in the nasal region and less in the bicoronal and anterior sagittal regions. No significant differences in cranial growth were noted with use of 100-ug/mL biopatterned rhBMP-2 when compared to the empty defect group. Qualitative μCT analysis revealed comparable bony defect healing between rhBMP-2 groups. Application of high-dose, 0.4mg/mL rhBMP-2 resulted in pansynostosis upon μCT analysis, further verifying cranial growth restriction. Low-dose, 100-ug/mL biopatterned rhBMP-2 consistently regenerated bone within the surgical defect margin without evidence of extra-sutural invasion.

CONCLUSIONS: Use of rhBMP-2 results in unwanted craniofacial changes in a dose-dependent manner. Local effects of high dose rhBMP-2 include pansynostosis and growth restriction that may limit its potential translation into the clinical setting. However, low dose biopatterned rhBMP-2 regenerates bone within a target defect without causing these undesirable side effects. This low-dose, spatially controlled methodology of growth factor delivery may improve the clinical efficacy of current off-label use of rhBMP-2 in the immature craniofacial skeleton.
METHODS & DESCRIPTION: In vitro wound healing assays were performed with primary dermal fibroblasts isolated from excess lip tissue of 16 CLP patients. Human foreskin fibroblasts from 9 individuals (6 healthy, 3 syndromic CLP) were used as control strains. Fibroblast monolayers were grown to confluence on culture dishes and scratches wound 1mm in width were applied; wound closure was monitored morphometrically over time. Statistical significances were determined by Kruskal-Wallis followed by a pairwise Wilcoxon rank sum test. The expression of genes involved in CLP and wound repair was determined by qRT-PCR. Based on the results obtained, effects of TGF-α, anti-TGF-α, and TGF-α inhibitors were tested in wound healing assays in vitro. RESULTS: The mean ranks of wound closure rate in vitro showed highly significant differences between individual fibroblast strains (P<2.2x10^-16). After performing an unpaired t-test, cell strains from different individuals could be divided into three migratory groups, namely “fast” (5 CLP, 3 phimosis), “intermediate” (10 CLP, 3 healthy foreskins) and “slow” (1 CLP, 3 healthy foreskins). These phenotypes were stable when assays were repeated with different cell passages from the same patients. Compared to “intermediate” and “slow” migratory groups, TGFα mRNA was significantly (2-fold) up-regulated in the “fast” migratory group. The addition of antibody to TGF-α or a specific inhibitor of its receptor reduced the wound closure rate of the “fast” group. Conversely, exogenous TGF-α accelerated wound closure by CLP-derived fibroblasts from the “intermediate” group. CONCLUSIONS: Of the CLP-derived fibroblast strains, about one third exhibited significantly faster wound closure in vitro. Increased cell migration correlated with higher expression levels of TGFα. This growth factor is known to regulate wound repair by affecting cell migration and proliferation. Interestingly, non-syndromic CLP has been linked to TGFα polymorphisms. A causal relationship between cell migration and scarring still needs to be established.

THE OPTIMAL RHBMP2 DOSE NECESSARY TO AUGMENT HEALING OF A MURINE CRANIAL DEFECT UTILIZING A NOVEL FIBRIN HYDROGEL SCAFFOLD

Christopher Madsen (1), Denver Lough (1), Edward Swanson (1), Anne Tong Jia Wei (2), Devin Miller (3), Anand Kumar (3), (1) The Johns Hopkins University School of Medicine, Baltimore, MD, (2) Johns Hopkins University School of Medicine, Baltimore, MD, (3) The Johns Hopkins School of Medicine, Baltimore, MD

Contact Email: thechrismadsen@gmail.com

BACKGROUND & PURPOSE: Although tremendous advancements in surgical reconstruction of large craniofacial defects have been made, a large proportion of patient outcomes remain unfavorable. Patients with combat and civilian trauma, cranioectomy for various intracranial pathologies and large en-bloc tumor resections are left with few, if any, reliable and successful reconstructive options. Technical challenges that exist in the reconstruction of larger and more complex craniofacial defects differ vastly from those of smaller defects, as their incidence of infection, soft tissue erosion, extrusion, and migration increase significantly. This study aims to further delineate the role of recombinant human bone morphogenetic protein-2 (rHBPMP2) by determining the dose required for maximal bone regeneration when delivered in a novel fibrin hydrogel scaffold.

METHODS & DESCRIPTION: Utilizing a murine model, C57BL/6(n=70) mice received two identical 5mm full-thickness cranioectomy defects (61.6 mm²) using a standardized micro-drill core bit. The mice were divided into 7 groups consisting of: cranioectomy without treatment (Group 1, n=10, negative control), cranioectomy with hydrogel only (Group 2, n=10), cranioectomy, hydrogel and 2ug rhBMP2 (Group 3, n=10), cranioectomy, hydrogel and 3ug rhBMP2 (Group 4, n=10), cranioectomy, hydrogel and 4ug rhBMP2 (Group 5, n=10), cranioectomy, hydrogel and 5ug rhBMP2 (Group 6, n=10), and cranioectomy, hydrogel and 7.5ug rhBMP2 (Group 7, n=10). Mice underwent CT imaging at 2 and 8 weeks to assess volumetric calvarial bone regeneration.

RESULTS: The mice in Group 1 who received cranioectomy without treatment and those in Group 2 who received cranioectomy with hydrogel only, showed no appreciable healing at 2 or 8 weeks intervals (p<0.05). Our preliminary data suggests a dose response curve for Groups 3-5, whereby statistically significant stepwise increases in bone regeneration occur as the dose of rhBMP2 increases from 2ug to 4ug (p<0.05); however no appreciable increase in bone regeneration occurs at rhBMP2 doses >4ug (Groups 6 and 7). The optimal dose of rhBMP2 to heal a 61.6 mm² defect in our study appears to consistently augment bone regeneration with >50% healing observed at 8 weeks (p<0.05).

CONCLUSIONS: Current surgical reconstruction of large craniofacial defects remains challenging and associated with a high incidence of significant complications. Numerous publications exist that delineate the role of specific biologic products intended to aid in the process of bone regeneration for the reconstruction of these defects, and among these is rhBMP2. The optimal dosing of rhBMP2 when delivered in a novel hydrogel scaffold for a murine cranial defect, as outlined here, will facilitate further evaluation of rhBMP2 when used alone or in combination with other biologic products to reconstruct large craniofacial defects.
RESULTS: ALP in Crouzon mouse ADSCs was significantly higher than the WT cells at Day 7, 14, and 21 (n=3, p<0.05), however, ARS staining showed, no difference in mineral. Gene expression analysis showed no difference in Col1a cells at Day 7, 14, and 21 (n=3, p<0.05). After 8 and 16 weeks post-op, no significant qualitative differences in bone architecture, bone mineralization, or osteoblast activity were observed between WT and Crouzon mice, however, fusion of cranial sutures was observed in reconstructions of Crouzon skulls.

CONCLUSIONS: Our data suggests that Crouzon ADSCs may undergo increased osteogenic differentiation, as compared to WT ADSCs in vitro. Qualitatively, the fusion of cranial sutures in the in vivo model suggests that bone healing is enhanced in Crouzon mice when defect healing occurs; this finding must be confirmed with quantitative measurements of bone growth. Outcomes of this work are the first steps towards developing a clinically-translatable therapeutic strategy for patients with Crouzon syndrome.

THE STATE OF OUTCOMES RESEARCH IN NON-SYNDROMIC CRANIOSYNOSTOSIS: A SYSTEMATIC REVIEW OF THE LITERATURE OVER 20 YEARS

Liliana Camison (1), Justin Morse (2), Sanjay Naran (3), Karen Wong (4), Joseph Losee (1), Jesse Goldstein (5). (1) University of Pittsburgh Medical Center, Pittsburgh, PA, (2) The University of North Carolina at Chapel Hill, Chapel Hill, NC, (3) University of Pittsburgh, Pittsburgh, PA, (4) Hospital for Sick Children, Toronto, ON, (5) Children’s Hospital of Pittsburgh, Pittsburgh, PA

BACKGROUND & PURPOSE: In the current era of result-driven health care, the careful evaluation of surgical outcomes must become an integrated part of patient care. The goal of this systematic review was to examine the state of outcomes reporting in the non-syndromic craniosynostosis literature in order to identify strategies for improvement.

METHODS & DESCRIPTION: A rigorous systematic review was conducted of all English articles evaluating outcomes in non-syndromic craniosynostosis published between 1993 and 2013. Pre-determined inclusion and exclusion criteria were applied and bibliographies were cross-referenced to minimize omission. Each article was analyzed for study design characteristics, population specifics, level of evidence grading, and outcomes metrics employed. Each member of a four-person research team independently reviewed all articles. Discrepancies were reviewed and resolved until a consensus was reached.

RESULTS: From January 1993 to October 2013, 840 articles were identified. A total of 132 articles met the inclusion criteria and were included for the review. Over the study period, there was a significant trend toward increasing annual rate of publications (R2=0.65). 85.6% of the publications were retrospective series, and 6% were prospective. 3.7% of studies were multicenter. 91.6% and 88.6% of the studies evaluated were graded with the lowest evidence scores in the ASPS and Oxford scales, respectively. 32.5% of outcomes studies (n=43) did not include a length of follow up. Of those that did, the average was 46.5 months (SD=36). Mean number of patients evaluated per study was 68 (SD=63.5). Outcomes measures varied significantly between publications. Only 15.1% (n=20) of studies used a validated outcomes measure, and all of these assessed neurodevelopment with established scales. In contrast, 45.4% (n=60) of studies employed ad hoc measures for analysis. 16.6% of studies (n=22) considered a patient- or family-reported outcomes mechanism. Aesthetic results were evaluated in some form by 44.5% of studies (n=59), and 35.6% of these used the Whitaker scale. However, 22% did not state any criteria for assessment. Other common outcome measures employed included: perioperative outcomes, 49.2% (n=65); complications, 40.9% (n=54); cephalic index, 26.5% (n=35); quantitative imaging analysis, 25% (n=33); and photographic analysis, 9% (n=12). Only 2.3% (n=3) of articles included a cost analysis.

CONCLUSIONS: The majority of the current literature on this topic remains classified as low level of evidence, stressing the need for more rigorously designed research. This review revealed the large variation in outcome measures used for non-syndromic craniosynostosis, making it difficult to combine evidence. This calls for a more consistent approach to outcomes reporting in the field. There is a need for validated outcome measures, and the Whitaker classification could be a good candidate for validation based on its clarity and wide use by craniofacial surgeons.

A PRELIMINARY REPORT ON THE USE OF POST-OPERATIVE STANDARDIZED OUTCOME TRACKING FOR INFANTS WITH SINGLE SUTURE CRANIOSYNOSTOSIS

Craig Birgfeld (1), Amy Lee (1), Michael Collins (1), Richard Hopper (1), Charles Haberkern (1), Joseph Gruss (2), Richard Ellenbogen (1), Timothy Grieb (1), Carrie Heike (3). (1) Seattle Children’s Hospital, Seattle, WA, (2) University of Washington, Seattle, WA, (3) University of Washington, Seattle Children’s Hospital, Seattle, WA

BACKGROUND & PURPOSE: Significant variability exists in the treatment of single-suture craniosynostosis (SSC) amongst centers and within the same team. This variability may lead to inefficiency, waste and can compromise patient care. In 2012, the Craniofacial Center at Seattle Children’s Hospital instituted a standardized pathway for the treatment of SSC. This pathway includes standardized order sets and checklists for outpatient visits, inpatient labs, tests, medications and nursing orders. Through a series of safety checklists, the providers can monitor outcome parameters in real time. The pathway includes 120 orders and 6 checklists for the following 6 phases of care: diagnostic, pre-surgical, immediate preoperative, immediate post-operative, transfer from PICU to the surgical unit, and discharge. We present our early experience using this system and focus on the outcomes documented in the immediate post-operative checklist.

METHODS & DESCRIPTION: For the purpose of this analysis we included patients with SSC who met criterion for the pathway and had a post-operative checklist completed by their provider. Patients with associated syndromes, multi-suture synostosis, previous cranioplasty or other major medical conditions were excluded from the pathway. Data were collected prospectively in each patient’s electronic medical record upon completion of the operation based upon consensus of the surgical and anesthesia team. Tableau™ software was used to generate descriptive statistics from the checklists.

RESULTS: During this 2 year span, 138 (60%) of the 231 patients treated for craniosynostosis were placed on at least one of the six phases of the pathway. Six had lambdoid (4%), 27 had metopic (20%), 23 had unicoronal (17%), 75 had sagittal (54%), and 7 (5%) were “other”. Of these, 99 patients had the post-operative checklist completed. Intraoperatively, sinus tear = 0, air emboli = 1 (without clinical changes), dura tear = 11, endotracheal malposition = 3, hypothermia = 5, and 1 patient required administration of a vasopressor intra-operatively. All open procedures involved blood transfusion and 85% received tranexamic acid. 87% received less than 2 units of prbc, 80% received less than 2 units FFP and no patients received platelets. No patients were discharged with a hematocrit less than 18. 1.8% returned to the emergency room within 30 days and 0.9% were re-admitted within 30 days.

CONCLUSIONS: Standard work protocols provide a mechanism to follow an established pathway for patients with SSC treated at our institution, and to create a baseline from which we can monitor change. We believe that this standardization improves safety and provides a mechanism to track outcome measures which allow us to monitor our care in real time. We hope these measures will serve as benchmarks to compare alterations in care within our center and amongst craniofacial centers. We continue to work towards developing further evidence for components of the pathway, and identify barriers to pathway use.

A TREATMENT PROTOCOL FOR ATYPICAL PRESENTING SAGITTAL CRANIOSYNOSTOSIS

Edward Ruane (1), Liliana Camison (2), Regina Fenton (2), Ian Pollack (2), Mandeep Tamber (2), Joseph Losee (5). (1) University of Pittsburgh Medical Center, Pittsburgh, PA, (2) Children’s Hospital of Pittsburgh, Pittsburgh, PA, (3) University of Pittsburgh Medical Center, Pittsburgh, PA

BACKGROUND & PURPOSE: Sagittal craniosynostosis is the most prevalent single-suture craniosynostosis and is typically diagnosed and treated within the first year of life. Within the authors highlight their experience with a patient- or family-reported outcomes mechanism. Aesthetic results were evaluated in some form by 44.5% of studies (n=59), and 35.6% of these used the Whitaker scale. However, 22% did not state any criteria for assessment. Other common outcome measures employed included: perioperative outcomes, 49.2% (n=65); complications, 40.9% (n=54); cephalic index, 26.5% (n=35); quantitative imaging analysis, 25% (n=33); and photographic analysis, 9% (n=12). Only 2.3% (n=3) of articles included a cost analysis.

CONCLUSIONS: The majority of the current literature on this topic remains classified as low level of evidence, stressing the need for more rigorously designed research. This review revealed the large variation in outcome measures used for non-syndromic craniosynostosis, making it difficult to combine evidence. This calls for a more consistent approach to outcomes reporting in the field. There is a need for validated outcome measures, and the Whitaker classification could be a good candidate for validation based on its clarity and wide use by craniofacial surgeons.

Abstracts
IMPLEMENTATION OF TRANEXAMIC ACID TO REDUCE BLOOD LOSS DURING CRANIAL VAULT REMODELING FOR CRANIOSYNOSTOSIS AT A SINGLE INSTITUTION

David Martin (1), Brian Diggs (2), Heike Gries (2), Jeffrey Koh (2), Martin Schreiber (2), Nathan Selden (2), Anna Kuang (2). (1) Oregon Health & Science University, PORTLAND, OR, (2) Oregon Health & Science University, Portland, OR

Contact Email: davethomasmartin@gmail.com

BACKGROUND & PURPOSE: Pediatric cranial vault remodeling for repair of craniosynostosis is associated with significant blood loss and need for blood transfusion. To reduce these events, our institution began using tranexamic acid (TXA) peri-operatively in 2012. We sought to quantify the impact TXA has had on reducing blood loss and the transfusion of all blood product components.

METHODS & DESCRIPTION: With institutional review board approval, a retrospective study from 2006 to 2013 was performed for all patients undergoing surgical correction of craniosynostosis at our institution. All available records were reviewed, and patient data were collected from the time of preoperative evaluation until discharge. We focused our review on patients with non-syndromic single-suture synostosis, before and after the implementation of TXA into our program.

RESULTS: We identified a total of 220 patients with craniosynostosis, of which 176 had non-syndromic single-suture disease. Of these 177, a total of 49 received TXA. A single surgical team performed all operations. Median age at time of surgery was 9.1 months (IQR of 5.9-10.4 months). The TXA group had a significant reduction in estimated blood loss (29 vs. 37 ml/kg p<0.01), cell saver volume (60ml/kg vs. 10 ml/kg p<0.01), red cell transfusion volume (33 vs. 42 ml/kg p<0.01), and exposure to plasma transfusion (2% vs. 27% p<0.01). Reduction in platelet transfusion did not reach significance (2% vs. 9% p=0.18).

Even with reduced red cell transfusion, the TXA-treated patients exhibited similar post-operative hematocrits (30.1 vs. 30.8 p=0.10) to those not treated with TXA. We found that length of stay was reduced with the use of TXA (4 days IQR 3-4 vs. 4 days IQR 4-5, p<0.01), as was output from surgically placed drains (177 vs. 328 ml p<0.01). We found no difference in mortality or post-operative complications between groups.

CONCLUSIONS: The introduction of TXA for non-syndromic single-suture synostosis repair at our institution resulted in significant reductions in blood loss and need for blood product transfusion for cranial vault remodeling. Postoperative hematocrits remained similar even with the reduced blood transfusion volumes. In addition, TXA use nearly eliminated the need for plasma transfusion, and is associated with a shorter hospital stay. No difference in postoperative complications was observed. Our data provides further support for the continued use of TXA in our program and its wider acceptance for pediatric cranial vault remodeling.
be explained with the occlusion of the left external carotid system and retrograde revascularization. Bilateral arterial repair is recommended in the event of full-face allotransplantation in order to maximize the normal physiology of the skeletal component of the allograft.

127 THE EFFECT OF CLEFT PALATE AND REPAIR ON GROWTH: A COMPARISON OF AMERICAN CHILDREN AND INTERNATIONAL ADOPTEES

Sandra Tomlinson-Hansen (1), Brianne Mitchell (1), Patrick Gerety (2), Rami Sherrif (1), Jordan Swanson (1), Jesse Taylor (3), (1) The Children’s Hospital of Philadelphia, Philadelphia, PA, (2) Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, (3) The Children’s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA

Contact Email: sandratomlinsonhansen@gmail.com

BACKGROUND & PURPOSE: Patterns of growth in children with a cleft palate have not been well delineated in the literature. This study describes the effect of plate repair on weight, length and head circumference in non-syndromic children at a major American cleft center.

METHODS & DESCRIPTION: A chart review was performed to identify all patients who underwent palatoplasty repair between 2010 and 2013. Syndromic patients, secondary repairs, and submucous cleft palate were excluded. Patients were categorized as internationally adopted or domestic. Growth measurements were abstracted from the electronic medical record up to April 2013. Length, weight, and head circumference data were converted to z-scores for age according to World Health Organization’s (WHO) standards. Three time periods were identified: birth, pre-cleft palate repair and post- repair (up to 2 years post-surgery). A growth model was fit to standardized anthropometric data, with time as a discrete variable and a random effect at the patient level. For each measure, contrasts were calculated between each of the three time periods separately for adoptees and domestic children. P-values were not adjusted for multiple comparisons.

RESULTS: We obtained 633 lengths, 720 weights, and 291 head circumferences from 22 international adoptees and 107 domestic children (47% female). Adoptees had significantly lower head circumference near age 4-6 months, than the domestic children, 10.8 months (p <0.001). At birth, z-scores for weight in both groups were negative (below average anthropometrics). The z-scores for weight declined from birth to pre-repair among both domestic children and adoptees (p < 0.001, and p = 0.079, respectively), and rebounded significantly after repair (p = 0.001 domestic, p = 0.001 adoptees). Length z-scores also declined significantly in both groups from birth to pre-repair, and increased pre- to post-repair (p-values all < 0.05). In both groups, head circumference declined from birth to pre-repair (p<0.05). Head circumference post-repair increased significantly in the domestic group (p < 0.001), but not in the adoptees (p = 0.449), whose mean z-score remained more than one standard deviation below normal.

CONCLUSIONS: Growth measurements in children with cleft palate are below average at birth. Growth measures decline further before palate repair, and for both domestic and adopte children weight and length measure recover following palate repair. Interestingly, this occurs despite the difference in timing of repair. Head circumference is the one measure for which adoptees do not catch up. These findings may have implications on the quality of pre-repair nutrition programs for cleft palate patients. The failure of normalization of head circumference in adoptees is also concerning for the potential downstream cognitive effects. Both of these issues warrant further study.

128 PERIOPERATIVE COMPLICATIONS IN POSTERIOR PHARYNGEAL FLAP SURGERY: REVIEW OF THE NATIONAL SURGICAL QUALITY IMPROVEMENT PROGRAM PEDIATRIC (NSQIP-PEDS) DATABASE

Contact Email: jswans@gmail.com

BACKGROUND & PURPOSE: Posterior pharyngeal flap (PPF) surgery has a long track record of success in the treatment of velopharyngeal incompetence (VPI). This study aims to identify risk factors for complications from and readmission after PPF using the American College of Surgeons National Surgical Quality Improvement Program Pediatric (NSQIP-Peds) database.

METHODS & DESCRIPTION: Patients who underwent posterior pharyngeal flap surgery (CPT codes 42225 or 42226) as their primary procedure were selected from the 2012 NSQIP-Peds program update file. Patient characteristics, comorbidities, and complication/readmission data were compiled. Fisher’s exact, chi-squared, and rank-sum tests were used to evaluate and compare risk factors.

RESULTS: 225 patients met the inclusion criteria for this study. Of those, 5.3% (12) had peri-operative complications. The most common complications were pulmonary in nature (n=10, 50%) including respiratory failure requiring mechanical ventilation (4, 33%) and post-operative pneumonia (2, 17%). Underlying asthma (p=0.024) or any cardiac risk factor (p=0.047) conveyed significant risk for complication. Other risk factors including esophageal varices (p=0.089), chromosomal abnormalities (p=0.079), VPI (p=0.073), and neuromuscular disorders (p=0.127) showed a trend toward associated complication. Four patients (1.8%) required readmission, at a mean interval of 8.8 days after the original procedure. Three patients (1.4%) required reoperation, at a mean interval of 9.8 days after the original procedure. 78 patients (35%) were discharged postoperatively on an outpatient basis, and this subgroup only included one patient (8%) with a complication (p = 0.038), which may suggest that surgeons are use good judgment in admitting patients with risk factors for complication to enable observation.

CONCLUSIONS: The 2012 NSQIP-Peds provides a reliable cross-sectional view of complications associated with posterior pharyngeal flap surgery across institutions. This study suggest that peri-operative complications surface at a low rate following pharyngeal flap surgery. Respiratory complications are the most common, and additional attention should be paid to those patients with asthma, cardiac risk factors, esophageal varices, chromosomal abnormalities, an ASA class of 3, and neuromuscular disorders. Future work will focus on increasing enrollment to gain deeper insight into risk factors as well as development of risk-reduction strategies.

129 ACELLULAR DERMAL MATRIX IN PRIMARY PALATOPLASTY: IMPLICATIONS FOR SPEECH

Darren Smith (1), Sanjay Naran (1), Sameer Shakir (1), Liliana Camison (2), Rick Mai (3), Jesse Goldstein (3), Joseph Losee (4), (1) University of Pittsburgh, Pittsburgh, PA, (2) University of Pittsburgh Medical Center, Pittsburgh, PA, (3) Children’s Hospital of Pittsburgh, Pittsburgh, PA, (4) University of Pittsburgh Medical Center, Pittsburgh, PA

Contact Email: dms1717@gmail.com

BACKGROUND & PURPOSE: Palatoplasty is performed to correct velopharyngeal incompetence (VPI). Post-operative palatal fistulas are to be avoided, as they recalcitrant lesions can lead to the regurgitation of fluid and food and independently cause VPI. Post-operative fistula formation is prevented by a tension-free watertight closure. Employing acellular dermal matrix (ADM) in difficult primary palatoplasties has minimized post-operative fistula rates in our previously reported experience. We hypothesize that the incorporation of ADM into primary Furlow palatoplasty does not adversely affect postoperative speech.

METHODS & DESCRIPTION: A retrospective review of consecutive patients undergoing primary Furlow palatoplasty with or without ADM at a major academic cleft-craniofacial center over a decade (from 2004 - 2013) by a single surgeon was performed. Children with syndromic diagnoses and those unable to cooperate with speech evaluation were excluded. Veau type, demographics, and post-operative speech results [quantified by Pittsburgh Weighted Speech Score (PWSS)] were recorded. The ADM and non-ADM groups were compared with regards to PWSS and frequency of secondary speech surgery. Statistical analysis was performed using SPSS Statistics 22.0 (IBM). Power analysis demonstrated sufficient sample size to demonstrate significant differences if present.

RESULTS: Inclusion criteria were met by 112 patients (ADM n = 50, non-ADM n = 62). Average follow-up was 5.0 years. ADM use did not differ significantly by gender (Pearson X2 p>0.05). Patients with more severe Veau diagnoses were significantly more likely to be treated with ADM (Pearson X2 p<0.001). ADM was utilized in 0% patients with Veau class 1, 35% patients with Veau class 2, 39% patients with Veau class 3, and 88% patients with Veau class 4. There was no significant correlation between ADM use and subsequent secondary speech surgery: 4.8% patients in the non-ADM group versus 12% patients in the ADM group (Fisher’s Exact Test p<0.05). Similarly, there was no significant correlation between ADM use and mean post-operative PWSS: 3.5 in the non-ADM group and 4.8 in the ADM group (Mann-Whitney U Test p>0.05).

CONCLUSIONS: ADM facilitates effective palatal closure in difficult primary palatoplasties and, as we have previously shown, prevents postoperative fistulas. It would not, however, be acceptable to undermine the primary goal of palatoplasty (normalized speech) to avoid another complication (post-operative fistula). ADM does not appear to adversely affect speech outcomes in primary Furlow palatoplasty. Concerns for possible speech disturbance should not deter one from using ADM to augment potentially tenuous primary Furlow palotoplasies.
PATIENTS WITH CLEFTS WHO UNDERGO SLEEP STUDIES AFTER SURGERY DO NOT SHOW SIGNIFICANTLY IMPROVED SLEEP PARAMETERS AFTER ADENOTONSILLECTOMY

Justine McGaulay (1), Jeremy Goss (1), Eric Adjei Boakye (1), Margie Hunter (1), Paula Buchanan (1), Alexander Lin (1), Shalini Paruthi (1).

(1) Saint Louis University School of Medicine, St. Louis, MO

Contact Email: jmgaull1@slu.edu

BACKGROUND & PURPOSE: The most common etiology for pediatric obstructive sleep apnea (OSA) is tonsillar or adenoidal hypertrophy. Children with cleft-craniofacial conditions have additional factors that lead to OSA, such as scarring and volume of the velopharyngeal complex. Our goal was to examine these patients who had postoperative polysomnograms (PSG), and compare adenotonsillectomy (AT) procedures versus non-AT procedures, in terms of their PSG measurements. Our hypothesis was that children with AT procedures would have better PSG outcomes than non-AT procedures.

METHODS & DESCRIPTION: After IRB approval, a retrospective review of records from 2009-2014 was conducted. Patients with PSGs were included for analysis including demographics, cleft type, syndromes, types of surgery, and PSG outcome measures. Data was analyzed post-operative procedure, with pre-operative PSGs (before the next surgery if there was an additional surgery), and preoperative PSG if one existed. Continuous outcomes were compared with Mann Whitney U-tests, and categorical by chi-square or Fisher exact tests.

RESULTS: 92 patients had a postoperative PSG after surgery, for a total of 115 postoperative PSGs. Of these postoperative PSGs, the procedure distribution was tonsillectomy (T) 52; adenotonsillectomy (AT) 33, adenoidectomy (A) 26 (AT > T > A). Postoperative OSA as defined by apnea-hypopnea index (AHI) > 1: T 4/5 (80%), A 4/5 (80%), AT 18/19 (95%), P=0.4644. Total AHI means of T 11.0, A 13.6, AT 16.4, P=0.4130. Obstructive AHI means of: T 11.4, A 12.5, AT 16.6, P=0.3671. Arousal index means: T 17.2, A 16.0, AT 14.2, P=0.7449. We then compared change between preoperative and postoperative PSGs. 30 patient groups were associated with pre- and post-operative PSGs. 17 procedures were T, A, or AT (TAAT), versus 13 non-TAAT procedures. Changes were measured as post-PSG minus pre-PSG. AHI change was: TAAT -0.35, non-TAAT -9.64, P=0.1736. Obstructive AHI change was [page 6]: TAAT 0.62, non-TAAT -9.7, P=0.1185. Arousal index change: TAAT -1.49, non-TAAT -6.24, P=0.4397.

CONCLUSIONS: Tonsillectomy, adenoidectomy, and adenotonsillectomy procedures, hypothesized to improve airway patency in patients with cleft palates, were not associated with significant improvement in OSA when compared to other cephalometric procedures. This result may be the result of heterogeneity of the procedures, or being underpowered, or indication bias from patients who received sleep studies were more likely symptomatic. We tentatively caution that tonsillectomy, adenoidectomy, and adenotonsillectomy may not have a strong effect as we would expect, and in that scenario, teams may want to avoid adenoidectomy to avoid its risks of velopharyngeal insufficiency.

INCIIDENCE AND SEVERITY OF OBSTRUCTIVE SLEEP APNEA IN ONE THOUSAND TWENTY CHILDREN WITH CLEFT-CRANIOFACIAL CONDITIONS

Justine McGaulay (1), Jeremy Goss (1), Eric Adjei Boakye (1), Margie Hunter (1), Paula Buchanan (1), Shalini Paruthi (1), Alexander Lin (1).

(1) Saint Louis University School of Medicine, St. Louis, MO

Contact Email: jmgaull1@slu.edu

BACKGROUND & PURPOSE: Sleep Disordered Breathing (SDB) is known to affect syndromic (e.g. PRS) patients with cleft palate. The guidelines in the United Kingdom suggest early sleep investigations at 4 weeks of age should be performed. There is a need to better understand the range of SDB in all patients with cleft palates, pre- and post-operative patients with cleft palate. Our aim was to elucidate the degree of SDB in infants with cleft palate at a younger age and those with associated syndromes. Pre- and post-operative studies demonstrate improvements in SDB in all groups but not normalisation of SDB in infants with cleft palate. Those with associated syndromes were more likely to require pre-operative airway adjuncts. The use of pre-operative sleep studies as a guide to the requirement of post-operative naso-pharyngeal airway adjuncts decreased the emergency placement of airway adjuncts after surgery.

CONCLUSIONS: Transient hypoxias during sleep are a normal part of infant development but are worse in patients with a cleft palate, and especially in those with an associated syndrome. We have demonstrated that SDB improves both with maturity and, to a lesser extent, with palatal surgery. We now use the results of pre-operative sleep studies to guide our decision making regarding intra-operative placement of naso-pharyngeal airway adjuncts. We also present a pragmatic algorithm for the investigation/management of SDB in cleft children that avoids unnecessary resource burden as well as minimising clinician and parental anxiety.
DEVELOPMENT AND VALIDATION OF COMPUTER-BASED 3D ANALYSIS OF SYMMETRY BEFORE AND AFTER CLEFT LIP REPAIR

Raymond Tse (1), Jia Wu (2), Carrie Heike (3), Craig Birgfeld (1), Kelly Evans (1), Murat Maga (1), Morrison Clinton (4), Linda Shapiro (2). (1) Seattle Children’s Hospital, Seattle, WA, (2) University of Washington, Seattle, WA, (3) University of Washington, Seattle Children’s Hospital, Seattle, WA, (4) University of Rochester Medical Center, Rochester, NY

Contact Email: raymond.tse@seattlechildrens.org

BACKGROUND & PURPOSE: Evidence-based cleft lip repair requires objective measurement of 3D nasolabial form however current methods of analysis are limited or cumbersome. The purpose of this project was to develop and validate automated quantitative measures of 3D nasolabial symmetry for infants with cleft lip. Aim 1 compares 5 methods of defining the mid-facial reference plane according to a 7-point reference scale. Rater (3 cleft surgeons, 3 craniofacial researchers) assessed the precision of each using two manual methods (direct placement and landmark) and 3 automated methods ("deformed", "mirror", and "learned"). Six raters (3 cleft surgeons, 3 craniofacial researchers) assessed the precision of each reference plane in a blind and randomized manner using 3D meshes that could be rotated synchronously. For each subject, raters ranked which method they thought performed best and rated how well each method approximated the mid-facial reference plane according to a 7-point reference scale. Rater reliability was assessed by Pearson correlation and differences in rankings and ratings were analyzed using ANOVA. Aim 2: Computer-based measures of symmetry were applied to 35 subjects with UCL±P before and after primary cleft lip repair and to 20 age-matched normal controls. The correlation of symmetry scores to subjective rankings of cleft severity was determined using linear regression analysis. Symmetry scores were compared before and after surgery and to normal controls.

RESULTS: Part 1: Manual methods of defining the mid-facial reference plane received better rankings and ratings than the automated methods. This difference was statistically significant for all automated methods except for the “deformed” method, which performed the best amongst the automated methods. The average correlation coefficient amongst raters was 0.4, however it rose to 0.7 and 0.9 when the angular difference between planes was greater than 6 and 8 degrees respectively. Part 2: Pre-operative symmetry scores correlated highly with subjective ratings of cleft severity (0.72) and columellar angle (0.71). Differences between pre- and post-operative symmetry scores were large for severe clefts and small for less severe clefts. Post-operative symmetry scores were similar to those for normal controls.

CONCLUSIONS: Processing of 3D images of infants with cleft lip can be automated. The “deformation” method of defining a mid-facial reference plane to measure facial symmetry performed best and was on par with human methods. Subsequent quantification of facial symmetry using the mid-facial reference plane correlated well with cleft severity and the pre vs. post-operative state. These methods may be used in objective surgical planning produced from treatment of cleft lip.
RESULTS: We found from scenarios (i) and (ii) that contraction of the MU in the model reduced the muscle activation required for VP closure by 10%. The tip-to-tip length of the MU decreased by 5% upon VP closure in (i), showing that the MU shortens during VP closure and therefore acts to shorten and thicken the muscle and the surrounding velar tissue. In (iii), activation of the MU with the LVP at rest decreased the VP distance by extending the posterior portion of the velum towards the posterior pharyngeal wall. Furthermore, contraction of the MU in (iii) increased the velar thickness and decreased the tip-to-tip length of the MU.

CONCLUSIONS: This study provides novel insights into the role of the MU in VP closure. A properly functioning MU, as shown by this study, a) decreases the VP distance, b) decreases the activation required for VP closure, and c) increases thickness at the velar knee. These effects result from the MU contracting the velar nasal surface, thereby extending the posterior velar segment and thickening the velar knee. These results indicate that cleft patients without the MU or without a properly reconstructed MU are predisposed to hypernasality since the function of the MU is intimately involved in VP closure. More complex models including additional velopharyngeal muscles will provide further insight into the contributions of other muscle functions in normal and cleft populations.

DIAGNOSTIC YIELD OF SKULL RADIOGRAPHS IN DIFFERENTIATING SYNOSTOTIC AND NON-SYNOSTOTIC PLAGIOCEPHALY

Min-Jeong Cho (1), Loa Borchert (2), Alex Kane (1), (1) University of Texas Southwestern Medical Center, Dallas, TX, (2) Children’s Medical Center, Dallas, TX
Contact Email: Min-Jeong.Cho@utsouthwestern.edu

BACKGROUND & PURPOSE: Differentiating synostotic and non-synostotic plagiocephaly can be challenging, and some providers routinely obtain skull radiographs when evaluating an infant who presents with plagiocephaly. While it is a common practice to obtain skull radiographs as a diagnostic adjunct to differentiate the types of plagiocephaly, obtaining skull radiographs is controversial because the diagnostic yield has not been studied, and there is concern for radiation exposure and cost.

METHODS & DESCRIPTION: After obtaining IRB approval, a retrospective review of all patients who were referred to the University of Texas Southwestern Medical School of Medicine, Children’s Medical Center (Dallas, TX) between the years of 2010 to 2012 with a diagnosis of plagiocephaly was undertaken. Patient demographics, perinatal data, physical exam findings, skull radiographic findings in radiologist reports, and CT findings were collected, and descriptive statistics were calculated.

RESULTS: Electronic medical records of 1429 patients with a diagnosis of plagiocephaly were reviewed. 6 of 1429 patients obtained CT after initial evaluation without prior conventional skull radiographs, and within this group 3 patients (50%) had true synostosis. 1218 of 1429 patients obtained skull radiographs after initial exam, and 23% had abnormal radiographic findings. 28 of 1218 had findings concerning for synostosis, and 16 of 28 patients obtained CT. Of these 16, 3 patients (0.13% of those obtained skull radiographs) had radiographic findings consistent with synostosis from CT.

CONCLUSIONS: There is a low diagnostic yield in ordering routine skull radiographs to differentiate between synostotic and non-synostotic plagiocephaly in patients with a plagiocephaly. A discussion of the costs in terms of radiation risk, economic burden, and diagnostic information gleaned from skull radiographs will be undertaken in presenting these data.

THE ROLE OF PREOPERATIVE IMAGING IN THE OPERATIVE PLANNING AND DETECTION OF INTRACRANIAL ABNORMALITIES IN SINGLE SUTURE LAMBDOID CRANIOSYNOSTOSIS

Asra Hashmi (1), Kavitha Ranganathan (2), Antonio Rampazzo (3), Karin Muraszko (3), Christian Vercler (3), Jennifer Strahle (3), Steven Buchman (4), Charita Ambrose (1), Stephen Carr (2), Derek Merck (3), Margaret Byrne (4), (1) Wayne State University, Detroit, MI, (2) University of Michigan Health Systems, Ann Arbor, MI, (3) University of Michigan, Ann Arbor, MI, (4) University of Michigan, Ann Arbor, MI
Contact Email: ahashmi@med.wayne.edu

BACKGROUND & PURPOSE: The use of imaging with concomitant clinical examination has traditionally served as the cornerstone for the diagnosis and treatment of craniosynostosis. The execution of imaging to establish a correct diagnosis and to guide patient management in children with isolated single suture, non-synndromic craniosynostosis, however, has recently become a subject of controversy because of the potential deleterious effect of radiation in a young child. Unfortunately, the role that imaging can play in operative planning has been largely ignored in this debate. The purpose of the current study is to evaluate the impact of preoperative imaging in patients who have undergone operative intervention for lambdoid craniosynostosis to delineate how imaging can affect intraoperative and postoperative management.

METHODS & DESCRIPTION: A retrospective single center review of all patients who underwent total cranial vault remodeling for lambdoid craniosynostosis between January 2006 and 2014 was conducted after IRB approval. Data was collected on patient demographics, age at CT scan, age at surgery, results of the radiologic evaluation, operative technique, and modification of the diagnosis following the radiologic studies. Radiological examinations were interpreted by a pediatric neuroradiologist and reviewed by the surgical team. Findings related to genetic, ophthalmological and neuropsychiatric evaluations were recorded. Additional MR and CSF flow studies were ordered at the discretion of the attending neurosurgeon. The primary outcome of interest was a documented change in operative and postoperative management based on imaging results.

RESULTS: A total of eleven patients were diagnosed with lambdoid synostosis. There were 8 males and 3 females in this group. Average age at CT scan was 9 months (range 1-24 months), and average age at surgery was 16.9 months (range 10 – 29 months). Of these patients, 81.8 % were found to have abnormalities on initial radiographic studies important to operative planning. The most common abnormal findings were Chiari I malformation (45%) and venous anomalies of the posterior cranial fossa (36%). Thence, preoperative imaging studies led to an alteration in the overall management in 9 (81.8%) patients. Closely followed by was required for six patients (54%). Subcortical decompression for Chiari malformation was required in four patients (36%). Anatomically important findings requiring meticulous dissection; including hypoplastic transverse sinus, sigmoid sinus and/or internal jugular vein anomalies, were found in four patients (36%). In addition, diagnosis was changed to lambdoid synostosis in 2
patients (18%) who were initially diagnosed with positional plagiocephaly.

CONCLUSIONS: We propose that preoperative imaging is necessary in the setting of lambdoid synostosis to both aid in diagnosis and to assist in preoperative planning, given its association with additional anomalies and conditions that modify operative technique and postoperative follow-up.

140 OPTICAL COHERENCE TOMOGRAPHY: AN OBJECTIVE MODALITY FOR DETECTING PAPILLEDEMA IN CRANIOSYNOSTOSIS PATIENTS WITH SUSPECTED INTRACRANIAL HYPERTENSION

Contact Email: jswans@gmail.com

BACKGROUND & PURPOSE: Craniosynostosis may pose risk of neurocognitive impairment, particularly for patients with elevated intracranial pressure. Conventional detection of intracranial hypertension is either highly invasive or more commonly done indirectly via fundoscopy to detect papilledema, which is subjective, lacks sensitivity, and may be a late finding. Optical coherence tomography (OCT) is a noninvasive, precise ultrasonogram that has been used extensively in the adult literature to detect elevated intracranial pressure by objectively mapping and measuring thickness of the retina and optic disc. We aim to determine whether OCT can be reliably used to measure retinal thickness in infants with craniosynostosis, and whether findings correlate with clinical indications of papilledema and intracranial hypertension.

METHODS & DESCRIPTION: Patients diagnosed with craniosynostosis who were deemed candidates for cranial vault remodeling at a tertiary craniofacial center were included in the study. After induction of general anesthesia, a portable OCT device was used in the operating room to image bilateral funds, both to measure retinal and optic nerve thickness and perform 3-dimensional mapping. When indicated by the neurosurgical service, patients also underwent direct intracranial pressure measurement. Patient characteristics, clinical findings, and ophthalmologic evaluations were reviewed.

RESULTS: Ten retinas in five patients with craniosynostosis (two each with metopic and unicoronal, one with sagittal synostosis) underwent OCT prior to cranial vault remodeling. Mean length of procedure was 30 minutes ± 5 minutes. Six retinas (three patients) were found to have normal optic nerve thickness and surface characteristics. Two patients (four retinas) revealed abnormally thickened optic discs bilaterally. One of these patients did not exhibit papilledema on preoperative fundoscopy exam. The other patient, who experienced headaches preoperatively, demonstrated severe optic disc swelling on OCT, and intracranial pressure was elevated (26 mmHg) on opening but decreased to nearly normal (12 mmHg) after frontal bone removal. Radiographic findings including thumbprinting of the cranial bone were further suggestive of intracranial hypertension in both patients.

CONCLUSIONS: Optical coherence tomography is a feasible modality for objectively measuring retinal thickness in infants with craniosynostosis. Two patients were found to demonstrate thickness consistent with papilledema, which corroborated clinical suspicion of intracranial hypertension, although papilledema could only be detected preoperatively on fundoscopy in one of them. With further enrollment, we hope to validate OCT as a non-invasive modality to detect elevated intracranial pressure in infants with craniosynostosis.

141 RELATIONSHIP BETWEEN RECEPTIVE LANGUAGE AND TEACHER AND PARENT REPORTS OF ATTENTION PROBLEMS IN CHILDREN WITH OROFACIAL CLEFTS

Jody Coppersmith (1), Amy Morgan (2), Brent Collett (3), Claudia Crilly Bellucci (4), Arthur Curtis (1), Kathleen Kapp-Simon (5). (1) Shriners Hospitals for Children - Chicago, Chicago, IL, (2) Shriners Hospitals for Children - Chicago, Forest Park, IL, (3) University of Washington School of Medicine, Seattle, WA, (4) Shriners Hospitals for Children - Chicago, Chicago, IL, (5) Shriners’ Hospitals for Children - Chicago, Chicago, IL

Contact Email: j.coppers7@gmail.com

BACKGROUND & PURPOSE: Internationally adopted patients with cleft lip and palate (CLP) face complex psychosocial challenges as they overcome language and cultural barriers while adjusting to their new family life. In addition, these patients differ from their non-adopted counterparts in both the timing of their presentation and the variable treatment backgrounds in their native countries. There is a paucity of literature on whether these families require additional resources from the interdisciplinary cleft lip and palate team. The purpose of this study is to describe the characteristics of adopted children with CLP and to compare the need for social work intervention between adopted and non-adopted children with CLP.

METHODS & DESCRIPTION: This retrospective comparative outcome study evaluated the timing of surgery of 38 matched pairs of adopted and non-adopted children with CLP who were born between August 1993 and November 2012. The sample breakdown by diagnosis was as follows: unilateral CLP (71.1%), bilateral CLP (10.5%), unilateral cleft lip (5.3%), and isolated cleft palate (13.2%). There were 21 (55.3%) females and 17 (44.7%) males. The majority of those adopted come from China (97.4%). The mean age at the time of adoption was 25.8 ± 10.6 months. Descriptive statistics and the Wilcoxon Signed Rank Tests were used to describe the characteristics of the adopted children compared to the control group.

RESULTS: At the time of adoption 12.9% of the children had an unrepaired cleft lip and 77.1% had an unrepaired cleft palate. Six children required cleft lip revisions. Children who were adopted were statistically significantly older than those who were not adopted at the time of cleft lip and/or cleft palate repair (z = -2.94 and -2.20, p<0.05). Timing of cleft lip repair was performed an average of 3.37 ± 1.65 months post adoption. Cleft palate repair was conducted at an average of 4.43 ± 1.50 months post adoption. Twenty-two (57.9%) of the adopted children had medical comorbidities compared to 5.3% in the non-adopted group. Sixteen (42.3%) of the children who were adopted were referred to social work for psychosocial intervention. Although the rate of referral to social work did not differ between groups, the reasons for referral were different. In addition to general referrals to address socio-emotional coping, the referrals to social work in the adopted group were for behavioral, psychiatric and academic concerns that arose less frequently in the non-adopted group.

CONCLUSIONS: Adopted children with CLP require the same inter-professional resources as their non-adopted peers; however, their psychosocial needs are unique compared to their non-adopted peers.

142 INTERNATIONALLY ADOPTED CHILDREN WITH CLEFT LIP AND PALATE: IMPLICATIONS FOR SOCIAL WORK

Farah Sheikh (1), Emily Ho (1), Sally Hynes (2), David M Fisher (1), Christopher Forrest (1). (1) The Hospital for Sick Children, Toronto, Ontario, Canada, (2) Shriners Hospital for Children - Chicago, Chicago, IL

Contact Email: farah.sheikh@sickkids.ca

BACKGROUND & PURPOSE: Internationally adopted patients with cleft lip and palate (CLP) face complex psychosocial challenges as they overcome language and cultural barriers while adjusting to their new family life. In addition, these patients differ from their non-adopted counterparts in both the timing of their presentation and the variable treatment backgrounds in their native countries. There is a paucity of literature on whether these families require additional resources from the interdisciplinary cleft lip and palate team. The purpose of this study is to describe the characteristics of adopted children with CLP and to compare the need for social work intervention between adopted and non-adopted children with CLP.

METHODS & DESCRIPTION: This retrospective comparative outcome study evaluated the timing of surgery of 38 matched pairs of adopted and non-adopted children with CLP who were born between August 1993 and November 2012. The sample breakdown by diagnosis was as follows: unilateral CLP (71.1%), bilateral CLP (10.5%), unilateral cleft lip (5.3%), and isolated cleft palate (13.2%). There were 21 (55.3%) females and 17 (44.7%) males. The majority of those adopted come from China (97.4%). The mean age at the time of adoption was 25.8 ± 10.6 months. Descriptive statistics and the Wilcoxon Signed Rank Tests were used to describe the characteristics of the adopted children compared to the control group.

RESULTS: At the time of adoption 12.9% of the children had an unrepaired cleft lip and 77.1% had an unrepaired cleft palate. Six children required cleft lip revisions. Children who were adopted were statistically significantly older than those who were not adopted at the time of cleft lip and/or cleft palate repair (z = -2.94 and -2.20, p<0.05). Timing of cleft lip repair was performed an average of 3.37 ± 1.65 months post adoption. Cleft palate repair was conducted at an average of 4.43 ± 1.50 months post adoption. Twenty-two (57.9%) of the adopted children had medical comorbidities compared to 5.3% in the non-adopted group. Sixteen (42.3%) of the children who were adopted were referred to social work for psychosocial intervention. Although the rate of referral to social work did not differ between groups, the reasons for referral were different. In addition to general referrals to address socio-emotional coping, the referrals to social work in the adopted group were for behavioral, psychiatric and academic concerns that arose less frequently in the non-adopted group.

CONCLUSIONS: Adopted children with CLP require the same inter-professional resources as their non-adopted peers; however, their psychosocial needs are unique compared to their non-adopted peers.
EXAMINING SOCIAL AND COMMUNICATIVE FUNCTIONING IN CHILDREN WITH VELOPHARYNGEAL INSUFFICIENCY

Agnieszka Dzibio (1), Elizabeth Skarakis-Doyle (1), Philip Doyle (1), Murad Hussein (2), Anne scarf 2000 Facot (3), (1) University of Western Ontario, London, Ontario, (2) Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario
Contact Email: adzibio@gmail.com

BACKGROUND & PURPOSE: While the physical difficulties associated with velopharyngeal insufficiency (VPI) have received primary attention both in research and intervention, at present, a comprehensive understanding of the social and communicative functioning of these individuals is limited. In particular, children with VPI suggests that multiple components of social competence may be affected in some children with VPI. Furthermore, in contrast to the literature describing speech and voice impairments, comprehensive study of broader communication impairments have not been studied extensively in children with VPI. Decrements in communicative functioning clearly have the potential to affect the child’s social competence. As a result, social interaction may be affected with varied levels of decrements in communication skills. The present study explored the social and communicative functioning of children with VPI.

METHODS & DESCRIPTION: 20 children with VPI (7-14 years), and 20 typically developing children matched for age and gender participated in this study. Parents of children completed the Social Competence (SC) scale of the Home and Community Social Behavior Scales (HCSSB), a 32-item measure used to assess social-behavioral characteristics of children. Further, parents of children in the VPI group also completed the Children’s Communication Checklist – Second Edition (CCC-2), a 70-item instrument evaluating children’s broad communicative abilities. The experimental questions posed were: 1) Do children with VPI experience less social competence than controls?, 2) Do children with VPI experience decrements in communication skills compared with normative scores?, and 3) Does a relationship exist between SC total scores and CCC-2 scores in children with VPI?

RESULTS: On average, children with VPI scored significantly lower on social competence than typically developing children. In addition, parents of children in the VPI group also reported more difficulties in communication skills when compared to norm-referenced data of children in the same age group. Finally, a moderate to strong correlation was observed between social competence and communication skills in children with VPI.

CONCLUSIONS: According to parent report, children with VPI experience more decrements in social competence compared with typically developing children. These limitations in social competence are likely associated with their overall communicative functioning. As such, the present data allow for an enhanced understanding of limitations in social and communicative participation in children with VPI.

FACING DIFFERENCES: AN ANALYSIS OF MEDIA REPRESENTATION OF FACIAL DIFFERENCE

Stephanie Chatland (1), (1) Queen’s University, and McMaster University (Canada), Hamilton, Ontario
Contact Email: chatland.stephanie@gmail.com

BACKGROUND & PURPOSE: In this day and age, North American society is heavily influenced by advertisements, movies, television shows, and literature. As such, exploring the media’s representation of facial difference (FD) is of importance to address, as it is necessary to understand what if any impact and influence the media has historically had on people with facial differences. This research sought to examine how individuals who identify as having a FD view current representations of facial difference in mainstream media and what they understand to be the impacts of such on their own lives.

METHODS & DESCRIPTION: This research called upon Critical Disability Theory, in an effort to de-center understandings that suggest facial differences are a “problem” with the individuals who identify as having a FD, but instead, to suggest the problems lie in broader social attitudes and beliefs that create and maintain stigma. Participants were gathered through snowball sampling, (with assistance from Aboutface International) as well as from media and newsletter articles about the research. A focus group with five participants occurred over a four-hour span in one day, and discussed 12 media stills (images) where facial difference was represented. The qualitative research methods of Photo Voice and Photo Elicitation were used together in order to elicit participants’ feelings, concerns, and to promote dialog on the topic. In addition, participants were given power through their own use of visual imagery and language; doing so was a means for participants to challenge existing visual representations in mainstream media. Rather than calling on the historically-valued quantitative research methods that are often used in the medical world, it was important to this research to gather first-hand, descriptive stories from participants so that participants could share their experiences of the effects of media representation of FD.

RESULTS: After the focus group transcription was completed (by an outside transcriber), the transcripts were used to identify major themes present in the data. Looking through each sentence allowed for the identification of major ideas brought up by participants. Macro and micro conditions were accounted for when seeking explanations for participant’s statements. The focus group revealed many important issues pertaining to the topic of FD, including society’s notion of beauty; how individuals with a FD understand themselves in Western culture; and to what extent the media is responsible in shaping and promoting one’s understanding of “normal”. To provide validity to the methodologies used, participants were asked to provide feedback on the images created by the focus group to ensure they felt the images created represented what the group intended.

CONCLUSIONS: This research has identified the need for more attention to be paid to how FD is represented in the media, as Western society tends to portray FD inaccurately and inappropriately, with damaging results.

MY KID IS AN HONOR STUDENT: PARENTS PERCEPTIONS OF ACADEMIC ABILITY IN THEIR CHILDREN WITH ISOLATED NON SYNDROMIC CLEFTS

Stephanie Watkins (1), Robert Meyer (2), Arthur Aylsworth (1), Barry Ramsey (1), Jeffrey Marcus (2), Alexander Allori (4), Luiz Pimenta (5), Ronald Strauss (1), (1) UNC Chapel Hill, Chapel Hill, NC, (2) NC Birth Defects Monitoring Program, State Center for Health Statistics, Division of Public Health, Raleigh, NC, (3) Department of Otolaryngology, University of Kentucky, Lexington, KY, (4)nız (5) Department of Otolaryngology, University of Florida, Gainesville, FL

BACKGROUND: Facial clefts are the most common birth defects among children. Parents of children with clefts report difficulties understanding their children’s unique needs, and these difficulties may extend to the academic arena. As such, the objective of this study was to determine whether parents of children with clefts perceive that their children were succeeding academically.

METHODS: The sample for this study consisted of parents of children with clefts who attend the cleft lip and palate clinics of the research team. A survey was designed to assess parents’ perceptions of their children’s academic ability. The survey included demographic information, academic functioning, and a self-report measure of reading and math skills. The survey was distributed to parents at the time of their child’s clinic appointment.

RESULTS: The survey was completed by 83 parents. The majority of participants had children with isolated non-syndromic clefts (82%). The mean age of the children was 9.5 years (range: 0.5-17 years). The majority of participants reported that their children were succeeding academically (79%). The participants who perceived their children as succeeding academically were more likely to have children who were attending school (p < 0.05). There was no significant difference between parents of children with and without clefts in their perceptions of academic ability.

CONCLUSIONS: Parents of children with clefts have positive perceptions of their children’s academic ability. This finding is important as it may support the use of community support programs and interventions to help parents and children with clefts succeed academically.
QUALITY OF CARE BY CRANIOFACIAL TEAM – PARENTS PERCEPTION

Luiz Pimenta (1), Stephanie Watkins (2), Robert Meyer (3), Arthur Aylsworth (2), Barry Ramsey (2), Jeffrey Marcus (4), Ronald Strauss (2), (1) University of North Carolina, Chapel Hill, NC, (2) UNC Chapel Hill, Chapel Hil, NC, (3) NC Birth Defects Monitoring Program, State Center for Health Statistics, Division of Public Health, Raleigh, NC, (4) Duke Univ Med Ctr, Durham, NC, (5) Duke University Hospital, Durham, NC

Contact Email: Luiz.Pimenta@unc.edu

BACKGROUND & PURPOSE: The primary objective of this study was to examine the quality of care offered by craniofacial teams and whether parents perceived better outcomes if the care was delivered by interdisciplinary teams.

METHODS & DESCRIPTION: We identified a cohort of 685 children with an orofacial cleft and 6,822 children without a known structural birth defect from the North Carolina Birth Defects registry and Birth Certificates, respectively, who were born between 1997-2003. Cleft cases were confirmed by a geneticist based on medical chart reviews. We mailed a parent/caregiver survey to all families of children with a cleft and a random sample of 1,201 unaffected families to obtain information regarding parent perception of school achievement as well as child development. We calculated frequency distributions and chi square statistics to describe differences in parental perception of educational performance between children with and without an isolated cleft.

RESULTS: Thirty two percent of families of children with a cleft and 27% of children without a known structural birth defect responded. Among the respondents, 176 children had an isolated non syndromic cleft and 333 did not have a known structural birth defect. Parents of children with an isolated cleft were 62% more likely to perceive their child's child's intelligence as less than others, compared to unaffected families. Yet, parents' perception of their child's effort in school was similar. Although few parents of a child with a cleft perceived their child's intelligence as less than others (10.23%), they were approximately five times (Cleft: 10.28% vs No Birth Defect: 2.10%; p<0.0001) more likely to feel their child was less intelligent compared to parents of children without a structural birth defect.

CONCLUSIONS: Parents of children with an isolated cleft are more likely to perceive their child as being less intelligent and as having difficulty in reading compared to parents of children without a known structural birth defect. Ongoing work will determine whether parental perception of educational performance among children with a cleft is a valid measure of the child's actual academic performance.

Overall, the majority of participating families reported that physicians/surgeons and the cleft/craniofacial team as whole did a very good/excellent job of communicating about their child's condition and plan of care.

CONCLUSIONS: Most of the parents of children with a cleft appear to perceive the quality of care provided by Craniofacial teams as “very good” or “excellent”. However, areas such as geneticist/genetic counseling and audiology presented lower percentage of “excellent” scores when compared to other areas. Further analyses will determine whether parental perception of quality of care will reflect the outcomes achieved by interdisciplinary teams.

22Q11.2 DELETION SYNDROME: OBJECTIVE ASSESSMENT OF A NEWLY IDENTIFIED FACIAL PHENOTYPE

Kelly Mabry (1), Charles Castiglione (2), Kerri Langevin (1). (1) Southern Connecticut State University, New Haven, CT, (2) Connecticut Children's Medical Center, Hartford, CT

Contact Email: kmabryinc@yahoo.com

BACKGROUND & PURPOSE: Patients with 22q11.2 Deletion syndrome are diagnosed through a variety of methods from chromosome analysis to clinical characteristics. Each genetic syndrome is unique and related to specific alterations in DNA. Clinically, these patients present with a myriad of phenotypes although the expression of the 22q11.2 deletion syndrome is highly variable. Facial anomalies are often the first phenotype that is recognized because they are so visible and well documented. The Craniofacial Team at Connecticut Children’s Medical Center has subjective, anecdotal, clinical evidence of a previously unidentified facial phenotype in the 22q11.2 Deletion population. In approximately 80% of the CCMC Craniofacial caseload, patients with 22q11.2 syndrome are identified as having a prominent vein at the neck.
THE PERPLEXING PREVALENCE OF FAMILIAL NESTED 22Q11.2 DELETIONS
Donna McDonald-McGinn (1), Maggueure (2), Patricia Schultz (2), Cynthia B. Solot (3), Laura Dicaino (2), Megan McNamara (2), Daniel McGinn (2), Beverly Emanuel (2), Elaine Zakkai (2), Oksana Jackson (2). (1) The Children’s Hospital of Philadelphia and Perelman School of Medicine of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA. (2) The Children’s Hospital of Philadelphia, Philadelphia, PA. (3) Children’s Hospital of Philadelphia, Philadelphia, PA
Contact Email: mcginn@email.chop.edu

BACKGROUND & PURPOSE: Most patients with 22q11.2DS have a de novo 3 Mb A-D deletion including loss of the important developmental gene TBX1 as well as diagnostic FISH probes located within the A-B region. In contrast patients with atypical nested deletions, B-D and C-D, do not include loss of TBX1, would have been missed by FISH alone and are frequently inherited. Here we report the perplexing prevalence of familial nested deletions as well as associated phenotypes including those presenting in Cleft Palate Clinics.

METHODS & DESCRIPTION: A retrospective chart review of all current patients seen by genetic medicine professionals over a 2 year period in a multi-disciplinary cleft clinic was completed. The study parameters include first to determine the incidence of the presence of the DNfAV within our 22q11.2 deletion clinical population and secondly to determine the reliability of various clinical providers to identify the DNfAV within our 22q11.2 deletion clinical population.

RESULTS: There was an 81% (44 subjects) positive identification of the presence of the DNfAV from a sample of 54 clinical raters. Group 1 were identified by the expert task group with 71% agreement of the rate of a positive DNfAV (78%) while the novice group reported a positive DNfAV in 65% of the subjects.

CONCLUSIONS: The prominent DNfAV is an easily recognizable feature in 81% of our 22q11.2 Deletion Syndrome clinical population. Adding this phenotype to the list of recognizable facial features may aid in diagnosing the syndrome earlier in the course of intervention.

CLINICAL GENETICS EVALUATION ESSENTIAL IN MULTIDISCIPLINARY CLEFT CLINIC
Julie Hoover-Fong (1), Colleen Goffredo (1), Natalie Beck (1), Carrie Blout (1), Kim Seifert (1), Richard Redett (2). (1) Johns Hopkins University, Baltimore, MD, (2) The Johns Hopkins University School of Medicine, Baltimore, MD
Contact Email: jhoover2@jhmi.edu

BACKGROUND & PURPOSE: Genetic medicine professionals are trained to elicit and combine family history with medical history and dysmorphisms to recognize that a specific collection of developmental anomalies are caused by a common genetic or environmental insult; a syndrome. Without genetic medicine expertise in the multi-disciplinary cleft clinic, opportunities are missed to provide accurate recurrence risk counseling and direct patient care for every patient and their family.

METHODS & DESCRIPTION: With IRB approval, a retrospective analysis of all patients seen by genetic medicine professionals over a 2 year period in a multi-disciplinary cleft clinic was completed. The study parameters include demographics, presenting cleft syndromic diagnosis vs. diagnostic category after clinical evaluation vs. final diagnosis after recommended tests and studies. A comprehensive genetic evaluation includes co-morbid conditions and teratogen exposure, and physical exam.

RESULTS: There were 650 clinical visits to the multi-disciplinary cleft clinic over 2 years. Genetic medicine professionals evaluated 293 unique patients for 327 anomalies including cleft lip and palate, patchy pigmentation, genitourinary anomalies; and developmental delay/ADHD; short stature/growth hormone media; scoliosis, strabismus; genitourinary anomalies; and developmental delay/ADHD. Importantly, dysmorphic features were overlapping yet variational.

CONCLUSIONS: A-D 22q11.2 deletions are generally de novo whereas nested deletions are frequently familial and dysmorphic features often associated with A-D deletions may be lacking perhaps due to a milder overall phenotype, the lack of involvement of TBX1 or the effect of modifier genes. Nonetheless, the observation is critical in identifying these patients; providing appropriate genetic counseling; and in better understanding the importance of developmental genes beyond TBX1, such as CRKL1 and SNAP29, to explain the clinical overlap with perplexing intergenerational variability. Further, based on this data, we can consider the possibility of a nested 22q11.2 deletion to explain craniofacial features typically associated with the standard deletion which will require testing beyond FISH such as MLPA or SNP microarray and to perform parental studies in all cases.

Disclosure: Other – Honorarium – I am a speaker for Natera.
BACKGROUND & PURPOSE: Whole exome sequencing (WES) is a successful genomewide approach to identify genetic causes of heterogeneous diseases. The Radboud University Medical Center was among the first to implement two-step exome sequencing in clinical genetic diagnostics. We show the first results of WES for craniofacial anomalies. The heterogeneity of these disorders makes WES a very suitable method for diagnostic genetic testing.

METHODS & DESCRIPTION: Seventeen patients with craniofacial anomalies, consisting of familial or syndromic cleft lip and/or palate, oligodontia and craniosynostosis were investigated by WES. WES was performed on Illumina HiSeq2000/4000M platform after enrichment with the Agilent SureSelect XT Human All Exon 50 Mb kit. DNA sequencing and variant calling with Genome Analysis Toolkit the annotation and clinical interpretation was performed with VarScanheim and variants were confirmed with Sanger sequencing.

RESULTS: By the first step analyses, a genetic diagnosis was made in 3/17 patients (18%). A heterozygous mutation in COL11A2 causing Stickler syndrome was identified in a patient with familial Pierre Robin sequence. In two siblings with oligodontia a homozygous WNT10A mutation was identified. In the remaining patients where no causal mutation was identified analysis of whole exome is ongoing, except for one patient who did not consent for this.

CONCLUSIONS: The first results of the WES craniofacial gene panel based on a small patient cohort are promising. These suggest a diagnostic yield of 18% in the first analysis, but further cases are needed to estimate a firm percentage. Moreover, the second step analyses are ongoing and may lead to novel or only recently identified candidate genes that were not yet included in the selected gene panel. Having a genetic diagnosis allows an updated approach and management of the disorder and adequate genetic counselling. Moreover, understanding the molecular background of these disorders will pave the way to explore possibilities for preventive strategies and for development of therapeutic measures. We recommend that diagnostic WES should be offered to patients with syndromal or familial forms of orofacial clefting.

CLARIFYING THE RELATIONSHIP BETWEEN THE DIFFERENT FEATURES OF THE OMENS+ CLASSIFICATION IN CRANIOFACIAL MICROSIMIA

Jorien Tuin (1), Youssef Tahrir (2), Kaitlyn Paine (3), James Paliga (1), Jesse Taylor (3), Scott Bartlett (1). (1) The Children’s Hospital of Philadelphia, Philadelphia, PA, (2) Indiana University, Indianapolis, IN, (3) The Children’s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA

BACKGROUND & PURPOSE: The OMENS+ classification is a commonly used tool to describe the phenotypically diverse craniofacial features of Craniofacial Microsomia (CFM). The purpose of this study is to evaluate associations between the individual components of the OMENS+ criteria.

METHODS & DESCRIPTION: An IRB-approved retrospective chart review was performed for patients who presented with a diagnosis of unilateral or bilateral CFM to the Craniofacial Clinic from January 1990 to December 2012. Demographic, diagnosis, classification, treatment, and radiographic data were abstracted for all patients who met inclusion criteria. Associations between the different features of the OMENS+ classification were evaluated using the Spearman’s Rank test and a Logistic Regression Model.

RESULTS: 255 patients with CFM were evaluated and treated during the study period. 105 patients met inclusion criteria. There were 61 males and 44 females, 81 patients (77.1%) had unilateral microsomia and 24 patients (22.9%) had bilateral microsomia. 28 patients (26.7%) had macrostomia. Correlations were all significantly interrelated (p<0.000-0.018) between the degree of orbital, mandibular and soft tissue deformities. Moreover, the severity of ear deformity and facial nerve involvement were also significantly correlated (p<0.008). Between these two groups there was a significant correlation between soft tissue deficiency and nerve involvement (p<0.010). Macrostomia was associated with the individual components of the group orbit (p<0.008), mandible (p<0.000) and soft tissue (p<0.005).

CONCLUSIONS: This analysis demonstrates that the association between structures using the OMENS+ classification may be caused by their branchial arch origin. Structures mainly developed from the first branchial arch (orbit, mandible and soft tissue) are associated in degree of severity, as are the structures mainly derived from the second branchial arch (facial nerve and ear).
SURGICAL INTERVENTION IN CRANIOFACIAL MICROSIMIA: THE EXPERIENCE OF 4 CRANIOFACIAL CENTERS WITHIN THE FACIAL NETWORK

Craig Birgfeld (1), Babette Saltzman (2), Scott Bartlett (3), Mark Urata (4), Luiz Pimenta (5), Amelia Drake (6), Daniela Luquetti (7), Kathleen Sie (8), Carrie Heike (9). (1) Seattle Children’s Hospital, Seattle, WA, (2) Seattle Childrens Hospital, Seattle, WA, (3) The Children’s Hospital of Philadelphia, Philadelphia, PA, (4) Children’s Hospital, Los Angeles, Los Angeles, CA, (5) University of North Carolina, Chapel Hill, UNC-CH, Chapel Hill, NC, (6) UNC-Chapel Hill Childrens Hospital, SEATTLE, WA, (8) Craniofacial Center, Seattle Children’s Hospital, SEATTLE, WA, (9) University of Washington, Seattle Children’s Hospital, Seattle, WA

Contact Email: craig.birgfeld@seattlechildrens.org

BACKGROUND & PURPOSE: Craniofacial Microsomia (CFM) is the second most prevalent condition treated within craniofacial teams and its complexity requires multidisciplinary care. Coordination of this care with the patient’s growth and development is paramount. Yet, disagreement exists regarding timing and type of procedures offered. We sought to quantify the surgical experience of patients with CFM amongst various centers.

METHODS & DESCRIPTION: The Facial Asymmetry Collaborative for Interdisciplinary Assessment and Learning (FACIAL) is a multicenter research network whose aim is to improve care for patients with CFM. Participating teams include Seattle Children’s (SCH), Children’s Hospital of Philadelphia (CHOP), Children’s Hospital of Los Angeles (CHLA), and University of North Carolina, Chapel Hill (UNC). Patients diagnosed with CFM at these centers were entered into the FACIAL network. Photographic and chart review confirmed the diagnosis. Surgical interventions and age of surgery were assessed by chart review and parent recall. Surgeries were grouped into the following categories: Airway, Dental, External Ear, Middle Ear, Eye, Facial Palsy, Orofacial cleft, Facial Skeleton, Soft Tissue and Other. Comparisons were made amongst centers and between patients of differing phenotypes.

RESULTS: 100 patients were enrolled (CHLA-20, CHOP-12, SCH-56, UNC-12). Of these, 21 had not undergone surgery. The other 79 underwent a total of 280 procedures related to CFM (avg = 3.5 per patient) in the following categories; Airway:23, Dental:15, External Ear: 96, Middle Ear:27, Eye:21, Facial nerve:2, Orofacial cleft: 16, Facial Skeletal: 18, Soft Tissue: 17, Other: 45. The 45: The number of operative anesthetics per year of life ranged from 0.26 to 0.76. Kids with microtia along with asymmetry (+/- other features of CFM) had the highest average number of surgeries per year of age, and skeletal growth stage matched symmetric patients were selected for comparison. Growth of the mandible was measured in each individual using two serial cone beam computed tomographic (CBCT) time-points obtained prior to surgical intervention at T0(12±4.5 yrs and T1=14±4.5 yrs) respectively. Longitudinal mandibular volumes were aligned using an automated, voxel-based regional registration at the mandibular symphysis. Directional symmetry and growth of the mandibular surface were quantified using SPHARM.

RESULTS: Mandibular shape and symmetry displayed distinct signatures in the three groups (ANOVA, p=0.03), with the greatest degree of asymmetry present in regions of the condyle and ramus. In particular, the condyle or proximal ramus on the dysplastic side in the CFM group was more laterally and posteriorly oriented relative to the contralateral side. In contrast, the nonsyndromic group had little asymmetry, and when present, was determined instead by differences in length and height of the condyle and ramus. Growth of the dysplastic condyle/proximal ramus in the CFM group paralleled the overall ramus orientation, in a lateral and posterior direction. The dentofacial deformity group had a relatively greater and more vertically oriented condylar growth rate on the hypoplastic side. The condylar growth rate was significantly less on the dysplastic side in Type II CFM cases (t-test; p=0.008).

CONCLUSIONS: Congenital anomalies of the craniofacial skeleton can impede the coordination of jaw growth, often producing progressive facial asymmetries. In these cases, quantification of asymmetric growth of the mandible can greatly improve planning of treatment approaches.

DISTINGUISHING GOLDENHAR SYNDROME FROM CRANIOFACIAL MICROSIMIA

Jorien Tuin (1), Youssef Tahiri (2), James Paliga (1), Jesse Taylor (3), Scott Bartlett (1). (1) The Children’s Hospital of Philadelphia, Philadelphia, PA, (2) Indiana University, Indianapolis, IN, (3) The Children’s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA

Contact Email: a.j.tuin@umcg.nl

BACKGROUND & PURPOSE: Goldenhar syndrome is characterized by the typical features of craniofacial microsomia (CFM) with the addition of epibulbar dermoids and vertebral anomalies. This study aims to examine the objective differences between patients carrying a diagnosis of Goldenhar syndrome to those diagnosed with CFM.

METHODS & DESCRIPTION: An IRB-approved retrospective chart review was performed on all patients who presented with a diagnosis of CFM or Goldenhar syndrome to the Craniofacial Clinic from January 1990 to December 2012. Demographic, diagnosis, OMENs+ classification, accompanying diagnoses, and radiographic data were collected. For subjective analysis, subgroups were designed based on the diagnosis Goldenhar syndrome or CFM per history. For objective analysis, subgroups were designed based on the presence of epibulbar dermoids and/or vertebral anomalies. The cohorts were compared with respect to associated medical abnormalities and severity of CFM features.

RESULTS: 138 patients met inclusion criteria. Epibulbar dermoids and vertebral anomalies were seen in 17% and 34% of the patients, respectively. Only ten patients (7.2%) had epibulbar both dermoids and vertebral anomalies. The subjective “Goldenhar” group (N=44, 32%) was found to have a higher percentage of bilaterally affected patients (p<0.001), a more severe mandibular deformity (p<0.001), a more severe soft tissue deformity (p=0.01) and a higher incidence of macrostomia (p=0.003). In the objective subgroup analysis, the only significant difference was found in the degree of soft tissue deficiency (p=0.049).

CONCLUSIONS: The diagnostic criteria of Goldenhar syndrome remain unclear, thereby making clinical use of the term “Goldenhar” inconsequential. Goldenhar syndrome is over diagnosed subjectively in those patients who show more severe CFM features.

PREVALENCE OF RENAL AND CERVICAL VERTEBRAL ANOMALIES IN PATIENTS WITH ISOLATED MICROCTIA

Shane Zim (1), Craig Sanders (1), Brian Rubinstein (2). (1) UC Davis Medical Center, Sacramento, CA, (2) Kaiser Permanente, Roseville, CA

Contact Email: shane.zim@gmail.com

BACKGROUND & PURPOSE: The objective of this study is to determine whether patients with isolated microtia have an increased prevalence of renal and/or cervical vertebral anomalies. Microtia is a congenital anomaly of the auricle that can range in severity from a mild structural abnormality to complete absence of the auricle and external auditory canal. Microtia can occur as an isolated anomaly or as part of a spectrum of anomalies or syndromes. Microtia with Goldenhar syndrome (20-60%). Controversy exists whether patients with isolated microtia (not associated with other craniofacial anomalies or syndromes) have Oculoauriculovertebral Spectrum. Patients with microtia may have congenital asymmetry. In these cases, quantification of asymmetric growth of the mandible can greatly improve planning of treatment approaches.
structural renal and/or cervical vertebral anomalies. Although there is little consensus regarding optimal screening evaluations in patients with microtia, it has been recommended that patients with microtia undergo routine ultrasound and cervical spine x-rays. Studies have shown an increased prevalence of structural renal anomalies in patients with microtia associated with other craniofacial anomalies or syndromes. However, studies have also shown no increased risk for structural renal anomalies in patients with minor anomalies of the auricle such as pre-auricular skin tags and sinuses. What is not clear is whether there is increased risk for renal and/or vertebral anomalies in patients with isolated microtia, which represent 40-80% of all patients with microtia.

METHODS & DESCRIPTION: A retrospective medical record review of all patients diagnosed with microtia, auricular atresia, and/or stenosis over 10 years. The study is currently in progress at two additional institutions. Patients with other craniofacial anomalies or syndromes were excluded. The following was determined: the number of patients with isolated microtia that underwent a renal ultrasound and/or cervical spine x-rays; the results of these studies; and further evaluation and/or treatment for abnormalities found.

RESULTS: To date, a total of 434 patients with isolated microtia and/or atresia were identified. 102 (24%) underwent renal ultrasound (age at ultrasound ranged from 1 day to 17 years, median 1 year). No patients had any structural renal anomalies. 2 patients had minimal pelviciatasis, both of which resolved with no further treatment. 70 patients (16%) underwent cervical spine x-rays (age at x-ray ranged from 1 day to 41 years, median 2 years), none of which showed any abnormalities. 250 patients (58%) had unilateral right microtia; 127 (29%) had unilateral left microtia; 44 (10%) had bilateral microtia; 257 (59%) had unilateral right atresia; 131 (30%) had unilateral left atresia; 35 (8%) had bilateral atresia.

CONCLUSIONS: Based on data obtained to date, there is no increased prevalence of renal and/or cervical vertebral anomalies in patients with isolated microtia and/or atresia. Therefore, these patients do not require routine screening renal ultrasound or cervical spine x-rays.

CONCLUSIONS: Neonates with BWS usually do not have perinatal breathing problems. Perioperative respiratory problems following anterior/posterior repair or undergoing an event and do not seem related to perinatal breathing issues. Of those BWS individuals with preTR documented OSA or clinical sleep issues, breathing is usually improved following lingual reduction.

DEVELOPMENT OF A ROBOTIC APPROACH TO CLEFT PALATE REPAIR. PHASE 1: CREATION AND VALIDATION OF A CLEFT PALATE SIMULATOR

Dale Podolsky (1), David Fisher (2), Karen Wong (3), Thomas Looi (4), James Drake (4), Christopher Forrest (4), (1) University of Toronto, Toronto, Ontario, (2) The Hosp for Sick Children, Toronto, ON, (3) Hospital for Sick Children, Toronto, ON, (4) The Hospital for Sick Children, Toronto, ON
Contact Email: dale.podolsky@mail.utoronto.ca

BACKGROUND & PURPOSE:Cleft palate surgery is a challenging procedure due to the limited access of working in a small cavity, poor visualization, the fragility of the tissues, and the difficulty of simultaneous access between the surgeon and assistant. Robotic surgery offers the advantage of increased access, improved visualization and enhanced precision and is therefore ideally suited for application within the pediatric oral cavity. The first phase of developing a pediatric robot to perform a cleft palate repair is to create and validate a high fidelity cleft palate simulator to test the robotic simulation, a highly realistic simulator can be used as an effective training tool.

METHODS & DESCRIPTION: An infant computed tomography (CT) scan was utilized in conjunction with computer editing software to 3D print a cleft palate and molds of the oral cavity. An anatomical mold of the tensor veli palatini, levator veli palatini, palatopharyngeus, uvulus and palatoglossus muscles was created using computer animation software. The oral cavity, muscle complex and overlying mucosa were then casted with silicone. The oral cavity was then placed over the palate-muscle-mucosa unit and was made detachable to allow complete visualization of the palate-muscle anatomy. A cleft palate repair was performed on the simulator by two surgeons for validation. The simulator was tested by twelve PGY3 to PGY5 residents and was assessed as a training tool.

RESULTS: A highly realistic cleft palate model developed from a CT has been developed that simulates operating in the oral cavity and performing a cleft palate repair. The two surgeons were successful in performing a cleft palate repair on the simulator. The surgical steps included incising and elevating the mucosa off the underlying hard palate and muscularature, releasing the musculature from the palate and suturing the muscles and mucosa back together. In addition, the residents successfully performed each step of the procedure and the detachable oral cavity allowed complete visualization of the origin and insertion of the palatal musculature as well as their complex orientations and relationships with respect to each other.

CONCLUSIONS: We have successfully developed and validated a high fidelity cleft palate simulator that provides the most realistic environment to practice performing a cleft palate repair. In addition, the accurate representation of the anatomy allows better palatal understanding. The next phases of this project include developing the robotic surgical system followed by testing the robot on the cleft palate simulator followed by further testing on an animal model.

A CRANIOMETRIC ANALYSIS OF BILATERAL ENDOSCOPIC SUTURECUTOMY AND HELMET THERAPY FOR MANAGEMENT OF BILATERAL CORONAL CRANIOSYNOSTOSIS

S. Alex Rottgers (1), Hasan Syed (2), Yasser Jeelani (3), Edward Yang (4), Subhash Lohani (3), John Meara (5), Mark Proctor (3). (1) Boston Children’s Hospital Department of Plastic and Oral Surgery, Harvard University Medical School, Boston, MA, (2) Department of Neurosurgery, Georgetown Medical School, Washington, DC, (3) Department of Neurosurgery, Boston Children’s Hospital, Harvard University Medical School, Boston, MA, (4) Department of Radiology, Children’s Hospital of Boston, Harvard Medical School, Boston, MA, (5) Department of Plastic and Oral Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
Contact Email: stephen.rottgers@childrens.harvard.edu

BACKGROUND & PURPOSE: Treatment paradigms for both single suture craniosynostosis and bilateral coronal craniosynostosis have been significantly altered during recent years. Early endoscopic suture release and postoperative helmeting have demonstrated comparable results to open cranial remodeling while decreasing anesthesia time, morbidity, and hospital length of stay. Posterior distraction recently has been employed to delay the need for frontal advancement in bilateral coronal cases and to halt progressive turricrpephy. Our group has begun to employ bilateral coronal suturerecy with helmet
Abstracts

therapy in these cases. Here we report a craniometric evaluation of our surgical outcomes.

METHODS & DESCRIPTION: An IRB approved, single-institution, retrospective chart review was performed of all children presenting with bicoronal synostosis. Patient who underwent bilateral coronal endoscopic suturoectomy with helmet therapy were included if they had both preop CT imaging and a postop CT performed at least 6 months after surgery. Craniofacial measurements were taken on sagittal and axial views. Measurements included anterior cranial base length (ACBL; sella-nasion), anterior cranial height (sella-nasion-anterior frontal bone), cranial length, and cranial width. Additionally, cranial heights were measured with a line perpendicular to ACBL at nasion (anterior), sella (middle), and basion (posterior). The cranial heights were reported as absolute values and as a ratio normalized to ACBL (cranial height/ACBL).

RESULTS: A total of 19 children were treated with bilateral coronal synuroectomy. 10 patients had both pre- and postop CT studies for evaluation. Postop CT studies were performed 16.9 (6.5-26.6) months after surgery on average. Average anterior cranial lengths increased significantly from 35.3mm to 42.5mm (p=0.005). Cephalic indices also significantly improved from 91.1 to 89.9 (p=0.01). Anterior cranial height remained stable from 66mm preop to 67.4mm postop (p=0.80). Middle and posterior height did increase (83.5 to 96.9; p=0.005) (94.6 to 120.6; p=0.005). When expressed relative to ACBL as a ratio, the anterior and middle cranial height improved (1.89 to 1.59, and 2.38 to 2.29). Anterior bossing improved from 112.8 to 105.4 without significance (p=0.075).

CONCLUSIONS: Early endoscopic suturoectomy with postoperative helmet therapy is a rational alternative to posterior dissection in ameliorating the deformity of bilateral coronal craniostenosis, and preventing/diminishing turcyccephaly. This methods seems more physiologic as it addresses the region of active pathway and as previously reported, can be achieved with comparable morbidity.

163 COMPARISON OF CRANIAL ANTHROPOMETRIC MEASUREMENTS USING HAND CALIPER VERSUS LASER SCANNER TO DIAGNOSE SEVERITY AND ASSESS CHANGE IN PATIENTS WITH DEFORMATIONAL PLAGIOCEPHALY

Regina Fenton (1), Wei-Wei Lee (2), Lorelei Grunwald (3). (1) Children's Hospital of Pittsburgh, Pittsburgh, PA, (2) University of Pittsburgh School of Medicine, Pittsburgh, PA, (3) University of Pittsburgh Medical Center, Pittsburgh, PA

Contact Email: regina.fenton@chp.edu

BACKGROUND & PURPOSE: Deformational plagiocephaly (DP) occurs in 16-19% in infants. Current literature states that a confounding factor for diagnosis and decision making for treatment of DP is the lack of a proven viable measurement tool to quantify severity and change in DP. Several papers have debated the utility of the hand caliper as a practical tool for diagnosis and decision-making in determining which patients should be referred for helmet therapy (HT). Cranial anthropometric measurements made by a single nurse practitioner (NP) using hand caliper (HC) at a major children's hospital plagiocephaly clinic and a single orthotic company using laser scanner (LS) seemed to be closely correlated.

METHODS & DESCRIPTION: A retrospective review of all DP patients who underwent HT between January 2013 and July 2014 was performed. Data collected included race, gender, age at time of identification and presentation to the clinic, side of DP, dates of 1st and 2nd visits to medical facility, cranial index (CI), oblique diagonal difference (ODD), and head circumference at 1st and 2nd visits, presence of congenital muscular torticollis (CMT), physical therapy use (PT), and daycare use. The use of HC to measure CI and ODD was used to determine qualification for HT. Once eligible for HT, patients were sent to an orthotic company and LS is used to measure CI and ODD. Analysis was done to compare HC and LS measurements of ODD and CI.

RESULTS: Forty patients were identified that met inclusion criteria, 26 males and 14 females. 38 infants were Caucasian. The average age of identification of DP by the family was 2.2 months of age. Average age of presentation to the DP clinic was 5.7 months. 22 infants were para #1, 9 patients went to daycare. 22 patients had right-sided DP, 8 left-sided, and 10 bilateral. 36 infants had CMT (23 left, 12 right), 18 infants had already started PT by their first medical visit. HC measurements were obtained for CI and ODD at the time of the initial visit by a single NP and at approximately 3 months after beginning HT. LS measurements of CI and ODD were obtained within 3 weeks of the medical visit and approximately 3 months after beginning HT. Analysis of the measurements using the HC and LS showed that there were no significant differences between the HC and LS measurements (p=0.687, 0.266, 0.134 for OYC, CI, and ODD respectively, p<0.05 significance).

CONCLUSIONS: We have identified a cohort of infants with DP who underwent HC and LS measurements for CI and ODD which were closely correlated. Based on these findings, HC is an effective tool to evaluate the severity of DP, determine appropriate referral to an orthotic company for HT, and assess for change after HT. This correlation is important since it is very rare to have a medical facility with access to LS since the cost is quite prohibitive. Therefore, it is important to recognize this close correlation of cranial anthropometric measurements in an effort to accurately diagnose the severity of DP and to treat and refer appropriately.

164 SLIDING TEMPORALIS MYOPLASTY FOR SINGLE STAGE SMILE RECONSTRUCTION IN 15 CONSECUTIVE PATIENTS WITH FACIAL PARALYSIS

Andre Panossian (1). (1) Pediatric Plastic Surgery, Beverly Hills, CA

Contact Email: contact@apranossian.com

BACKGROUND & PURPOSE: The gold standard for dynamic smile reconstruction in facial paralysis is microsurgical free tissue transfer. Often, this approach may require additional surgery to correct secondary deformities such as excessive cheek bulk, asymmetric vector of oral commissure excursion, and asymmetric nasolabial fold production. These complaints are made frequently by patients considered to have successful outcomes. In addition, in the setting of bilateral facial nerve palsy, unilateral surgery is practiced more routinely than simultaneous bilateral reconstruction. Postoperative ICU admission is common, with hospital stays typically between 5 and 7 days. Prolonged operative times, longer hospital stays, and longer time to animation are associated with free flap options. Sliding temporalis myoplasty (STM) can provide one-stage dynamic smile reconstruction with equivalent results to free tissue transfer and with fewer secondary deformities.

METHODS & DESCRIPTION: From 2012 to 2014, 19 sliding temporalis myoplasties were performed in 15 patients for smile reconstruction. A retrospective chart review was carried out to determine diagnosis, laterality, and ancillary procedures performed. Patient and operative variables collected included age, sex, operative times, hospital length of stay, and perioperative complications (blood loss requiring a transfusion, infection, hematoma, seroma, unplanned return to the operating room).

RESULTS: A total of 15 consecutive patients with facial paralysis were included. Simultaneous bilateral reconstruction occurred in 4 patients, and 11 underwent unilateral procedures. Diagnoses included 5 patients with Mobius syndrome, 5 with posterior cranial fossa tumors, 2 post-traumatic, 2 idiopathic, and 1 with hemifacial microsomia. All patients underwent single-stage unilateral or bilateral STM. Excluding one adult patient (age 68 years), average patient age was 10.1 years. Average operative time was 378 minutes (581 minutes for bilateral STM and 304 for unilateral STM). Average length of stay was 3.2 days (4.25 days for bilateral STM, 2.8 for unilateral STM). No patients required postoperative intensive care unit admission. Eight patients required minor revisions of the tendon insertion site. Two patients required blood transfusion during the perioperative period. Two patients developed a postoperative infection requiring incision and drainage. All patients demonstrated smile excursion. CONCLUSIONS: These initial results indicate that the sliding temporalis myoplasty is a safe, viable alternative to free tissue transfer for dynamic smile reconstruction in patients with facial paralysis. Benefits to this procedure include limited donor site morbidity and immediate, predictable improvements in facial appearance. Shorter operative times, avoidance of ICU stays, and shorter hospital overall stays contribute to improved financial efficiency. Long-term functional and aesthetic outcomes are necessary to critically evaluate STM as a viable alternative for smile reconstruction.

165 LONG TERM GROWTH OUTCOMES OF PATIENTS WITH PIERRE ROBIN SEQUENCE WHO UNDERWENT INFANT MANDIBULAR DистракTION OSTЕOGENESIS

Michelle Scott (1), Stephen Yen (2). (1) Children's Hospital Los Angeles, Los Angeles, CA, (2) Children's Hospital of Los Angeles, Los Angeles, CA

Contact Email: michellescott123@yahoo.com

BACKGROUND & PURPOSE: Pierre Robin originally described the correlation between micrognathia and neonatal airway obstruction, which causes obstructive sleep apnea and is a significant cause of morbidity in infants. Patients with severe micrognathia are treated with mandibular distraction osteogenesis (MDO) to lengthen the mandible. The purpose of this study was to analyze the long-term growth outcomes of early intervention with MDO in patients with Pierre Robin Sequence (PRS) and compare them against non-distracted patients with PRS.

METHODS & DESCRIPTION: Radiographs from twelve patients diagnosed with Pierre-Robin sequence and obstructive sleep apnea who underwent MDO during infancy were analyzed using cephalometric measures and compared against non-distracted Pierre Robin patients described in the literature. All
mandibular distraction osteogenesis for the treatment of upper airway obstruction in Robin sequence (RS), and have reported the complications associated with this treatment modality in a heterogeneous population. The aim of this study is to evaluate efficacy and complications associated with MDO performed in neonates <4 kg.

METHODS & DESCRIPTION: A 10-year retrospective review of all neonates with RS treated with MDO was performed. Patients <4 kg at the time of distraction were included. A control group of all RS patients >4 kg undergoing mandibular distraction during the same time period was used for comparison. Variables included associated medical comorbidities, improvement in apnea/hypopnea index (AHI), need for tracheostomy, repeat distraction, and complications.

RESULTS: Ninety-five patients underwent MDO during the study period and 67 patients met inclusion criteria. The remaining 27 patients were >4 kg and used as a control group. Mean age and weight at time of distraction were 22 days (range 5 to 97 days) and 3.19 kg (range 2.00 to 3.99). The mean age and weight for the control group was 2 years 9 months and 12 kg. Low birth weight (<2500 g), intrauterine growth restriction, and prematurity were present in 26.4%, 26.0%, and 25.0% of the patients <4 kg respectively. There was not a significant difference in success of MDO to treat airway obstruction in the <4 kg group vs. the control group (97% vs. 88.9%; p = 0.1407). Success was defined as either decannulation, avoidance of tracheostomy, or significant improvement of obstructive sleep apnea symptoms. The number of patients <4 kg with 1 or more complications was 10 (14.9%). Within the <4 kg group, major complications were present in 1 patient (1.5%), moderate complications in 4 patients (6.0%), and minor complications in 9 patients (13.4%). The only major complication in the patients <4 kg was a fibrous non-union (1.5%). Moderate complications were device malfunction (3.0%) and SSI requiring return to the operating room (3.0%). Minor complications were SSI managed with oral antibiotics (9.0%), ventilator-associated pneumonia (1.5%), hematoma (1.5%) and transient facial nerve palsy (1.5%). The most common complication was SSI (11.9%), of which 25% were successfully treated by oral antibiotics alone. There was not a significant difference in complication rate between the patients <4 kg and the control group (14.9% vs. 22.2%; p = 0.3829). The rates of repeat distraction were similar between the <4 kg group and the control group (6.3% vs. 14.8%; p = 0.2206). The mean age at repeat distraction was 2.3 years in the <4 kg group and 9.2 years in the control group (p = 0.1213). The mean follow up was 2.9 years in patients <4 kg and 3.3 years in the control group (p = 0.6286).

CONCLUSIONS: MDO is a safe and effective treatment modality for neonates with RS, <4 kg and severe airway obstruction. The efficacy and complication profiles are not significantly different from patients >4 kg.
A COMPARISON OF THE NEED FOR SPEECH THERAPY FOLLOWING TWO PALATAL REPAIR TECHNIQUES
Debra Yen (1), Dennis Nguyen (1), Gary Skolnick (2), Sybll Naidoo (3), Kamlesh Patel (4), Lynn Grames (5), Albert Woo (6), (1) Washington University School of Medicine, St. Louis, MO, (2) Washington University School of Medicine, Saint Louis, MO, (3) Washington University School of Medicine, St Louis, MO, (4) Washington University in St. Louis, St. Louis, MO, (5) St Louis Children’s Hospital, St. Louis, MO, (6) Washington University in St Louis School of Medicine, Saint Louis, MO
Contact Email: yend@wusm.wustl.edu

BACKGROUND & PURPOSE: Speech problems in individuals with cleft palate deformities are a common occurrence, and reconstruction of the levator musculature (intravelar veloplasty) at the time of cleft palate repair has been suggested to be important in long-term speech outcomes. Nevertheless, the association between the type of cleft palate repair and the need for speech therapy remains unclear. In this study, we explore the indications for speech therapy among patients with cleft palate and also compare the need for postoperative speech therapy between two palatoplasty techniques.

METHODS & DESCRIPTION: A retrospective chart review was performed for patients with cleft palate who underwent either primary Kriens intravelar veloplasty (KR) or overlapping intravelar veloplasty (OV) before 18 months of age. All subjects underwent surgery between 2003-2012 and completed a follow-up visit at approximately three years of age. Only patients with nonsyndromic cleft palate, Pierre Robin sequence, or van der Woude syndrome were evaluated. Data obtained included documentation of ongoing or recommended speech therapy at age 3 years and reasons for speech therapy as noted by speech-language pathologists. Maladaptive articulation patterns, hypernasality secondary to velopharyngeal dysfunction, limited consonant repertoire, and limited oral opening were categorized as cleft-related reasons for speech therapy. Preoperative pure tone average (KP n=47; OV n=16) and the number of ear tubes placed by age 3 years (KR n=60; OV n=10) were also obtained, when recorded, to assess hearing loss.

RESULTS: All of the KR procedures (n=99) were performed by a single surgeon, while all of the OV procedures (n=30) were performed by the senior author (ASW). The mean age at surgery (13.3±1.4 months; p=0.259) and at age 3-year follow-up (KR=3.0 years; OV=2.8 years; p=0.087) were equivalent between the two procedures. At 3 years of age, 36.7% of OV patients required speech therapy compared to 64.6% of KR patients (p=0.008). For patients requiring speech therapy for cleft-related reasons, a significant difference was also found between the two groups (OV=23.3%; KR=49.5%; p=0.001). For patients requiring speech therapy for non-cleft related reasons, the difference between OV (30.0%) and KR (33.3%) patients was not significant (p=0.742). No significant difference was found in preoperative pure tone average (overall mean±SD 29.2 dB ± 6.016) or in sets of ear tubes placed (overall mean±SD 1.4 sets; p=0.669) between the two groups.

CONCLUSIONS: At three years of age, patients who received overlapping intravelar veloplasty were less likely to need speech therapy compared to patients who received Kriens intravelar veloplasty. Hearing loss did not appear to influence the difference found in need for speech therapy between the two surgical techniques.

SYSTEMATIC REVIEW OF STUDIES COMPARING PRIMARY PALATOPLASTY WITH FURLOW VERSUS NON-FURLOW TECHNIQUES VIA PERCEPTUAL SPEECH OUTCOMES
Thomas Gileda (1), Hannah Polus (1), Alexander Lin (1), (1) Saint Louis University School of Medicine, St. Louis, MO
Contact Email: tgildea@slu.edu

BACKGROUND & PURPOSE: Orofacial clefts, including clefts that involve the soft palate, are the most common birth defect in the USA. The most important morbidity of cleft palate is hypernasal speech due to insufficiency of the velopharyngeal sphincter. Proper alignment of the levator veli palatini is essential to the function of the velopharyngeal sphincter. Two popular techniques, intravelar veloplasty (IVV) and Furlow double-opposing Z-plasty, have been developed to restore velopharyngeal competence. However, there is still ongoing debate on the success rate of primary palatoplasty between these two techniques. Our study is a review of the literature comparing speech outcomes of Furlow and IVV for primary palatoplasty.

METHODS & DESCRIPTION: Searches were conducted on June 23, 2014 on the following databases: PubMed, Ovid MEDLINE, Scopus, CINAHL plus, and CENTRAL. Search terms used were: “Furlow” and “cleft palate surgery”. Duplicates, case reports, series with less than five subjects, and literature reviews were eliminated. Only studies concerning both Furlow and IVV perceptual speech outcome data were included. Studies that included submucous cleft palate or patients with syndromes were excluded. Pooled analysis was performed with available data.

RESULTS: After duplicates were removed, 121 full-text articles were examined, yielding 4 articles that met our inclusion criteria. In all four studies, Furlow had superior speech outcomes to IVV. However, only 2 studies found a statistically significant difference. 2 studies provided enough data to undergo a pooled analysis using hypernasality scores, which are graded on a 0 (normal) to 3 (severe) scale. This yielded Furlow n = 83 and IVV n = 149. 1 of these papers provided the data for each patient, which breaks down as follows: Furlow was 0 (20/20), and IVV was 0 (113/139); 1 (6/139), and 2 (2/139). The other study only provides means and standard deviations (SD), which were Furlow mean 0.32 (SD 0.74, n=63) and IVV mean 1.15 (SD 1.27, n=20). The means were combined using n, and the SD were combined using the equation for pooled variance, which demonstrated Furlow mean 0.243 (SD 0.647) and IVV mean 0.208 (SD 0.529). A Welch’s t-test shows P=0.6746.

CONCLUSIONS: Furlow palatoplasty had superior results to IVV in all studies included in this review, suggesting that Furlow palatoplasty may overall have superior velopharyngeal outcomes than IVV. However, our pooled analysis with available data did not show a statistical difference between Furlow and IVV perceptual speech outcomes. Possible confounding factors include the heterogeneity of the studies reviewed, publication bias, and the inter-rater reliability of perceptual speech assessments. We are looking at papers with Furlow-only or IVV-only data, but those will have even more random effects between groups than the papers selected here where both groups are compared by their respective authors.
It has been suggested that management of the levator veli palatini muscle dysfunction (VPD) is one of the major morbidities associated with cleft palate.

BACKGROUND & PURPOSE: Impaired speech resonance from velopharyngeal function is often observed in patients with cleft palate. Auditory or tactile feedback during speech improves the velopharyngeal function. The purpose of this study was to characterize the effect of auditory feedback on velopharyngeal function during speech.

METHODS & DESCRIPTION: Velopharyngeal opening and closing gestures were measured using an endoscopic light source and photo-transducer assembly. The velopharyngeal opening was monitored using an infrared video camera and an infraredлюдоскоп. The velopharyngeal closing gestures were measured using a light sensor that sensed the amount of light passing through the velopharyngeal port.

RESULTS: Velopharyngeal function improved in all patients when auditory feedback was used during speech. The mean nasality score was reduced from 0.64% before treatment to 0.04% after treatment. The mean pretreatment GF standard score was 72.2 and after treatment it improved to 79.6. The mean posttreatment standard score was 90.4 (change = 0.6, p<0.01). In the surgically managed group, the mean size of the velopharyngeal gap before treatment was 0.64% after treatment was 0.04% (change = 0.6, p<0.01).

CONCLUSIONS: Auditory feedback during speech improves velopharyngeal function. The use of auditory feedback in conjunction with speech therapy is recommended for patients with velopharyngeal dysfunction.

METHODS & DESCRIPTION: A retrospective chart review was conducted on 14 patients with 22q11.2 DS and compared to traditional speech therapy focusing on misarticulation in patients with 22q11.2 DS and compare this with traditional surgical management. The purpose of this study is to evaluate the role of speech therapy with and without surgical management for VPD and to determine how and to what extent surgical management affects speech intelligibility.

METHODS & DESCRIPTION: A retrospective chart review was conducted on 14 patients with 22q11.2 DS. Deletion Syndrome confirmed through FISH analysis. Patient demographics, surgical history, and speech therapy history were recorded from patient charts. Additionally, pre and posttreatment nasendoscopy scores, Goldman Fristoe (GF) articulation test results, and perceptual assessment of nasality scores were recorded. Following treatment, posttreatment evaluations were completed at 3 months, 6 months, and 9 months thereafter. Patients with VPD secondary to an unrepaird oesophageal cleft palate, patients surgically repaired at an outside institution, patients with incomplete data, and patients with a negative fluorescence in situ hybridization (FISH) study for 22q11.2 deletion were excluded from the study.

RESULTS: Velopharyngeal dysfunction (VPD) was present in all patients and confirmed by direct visualization with nasendoscopy and by perceptual assessment of nasality. The average age at diagnosis was 3.6 years (range 2 days – 7.9 years). Nine patients (64.3%) were treated with speech therapy and surgically and five (35.7%) were treated solely with speech therapy. There were no significant pretreatment differences between the two groups. In the surgically managed group, the mean pretreatment Goldman-Fristoe (GF) standard score was 79.6. The mean posttreatment standard score was 90.4 (change = 10.9, p<0.01). The mean percentile rank was 6.8 before treatment and 11.2 after treatment (change = 4.4, p=0.02). In the nonsurgically managed group, the mean pretreatment GF standard score was 72.2 and after treatment was 94.3 (change = 22.0, p<0.04). The mean percentile score before treatment was 6.2 and posttreatment was 22.2 (change = 16, p=0.05). When comparing the degree of improvement after treatment, there was not a statistically significant difference between the two groups although each group improved. In the surgically managed group, the mean size of the velopharyngeal gap before treatment was 0.64% after treatment was 0.04% (change = 0.6, p<0.01). In the surgically managed group, the mean nasality score before treatment was 4.7, indicating moderate/severe nasality. After treatment, the mean score was 1.3 indicating normal nasality (change = 3.3, p<0.01).

CONCLUSIONS: Patients with 22q11 DS and VPD benefit from both speech therapy and surgical correction however surgical correction improves resonance but may not improve articulation.
POST-PALATOPLASTY PAIN PROTOCOL: A PILOT STUDY
Allison Nauta (1), Lisa Piper (1), Heike Gries (2), Kenneth Azarow (3), Jeffrey Koh (2), Anna Kuang (2). (1) OHSU, Portland, OR, (2) Oregon Health & Science University, Portland, OR, (3) OHSU - Pediatric Surgery, Portland, OR
Contact Email: allisonnauta@gmail.com

BACKGROUND & PURPOSE: Pediatric primary palatoplasty is associated with significant pain post-operatively that can lead to delayed return to routine function. Pain management requires a comprehensive approach to address patient and families' needs and concerns. We worked with nursing staff, nurse educator, and pain/anesthesia and surgeon teams to develop a post-palatoplasty pain protocol. We wished to

METHODS & DESCRIPTION: Prior to any protocol, pain management consisted of "as needed" medications: oral, oral acetaminophen q4hrs, oxycodone q4hrs and IV morphine q1-2 hrs. A new pain-management protocol consisted of fixed IV acetaminophen q4hrs overnight, then switching to "as needed" oral Tylenol in the morning. "As needed" oral oxycodone was changed to q3hrs and IV morphine was the same as before. With IRB approval, we performed a retrospective review of a single surgeon experience from 2012-2014. We identified 84 consecutive patients who underwent palatoplasty before and after institution of the pain protocol in 2013.

RESULTS: 43 patients underwent operations prior to instituting a pain protocol and 41 underwent operations afterwards. There were similarities between the pre and post-protocol groups in average age (14.1 vs 12.5 months), length of stay (25.75 vs 25.68 hrs), and total oxycodone dosing (0.78 vs 0.78mg/kg). We noted a downward trend in average pain scores (4.35 vs 3.89) and total morphine dosing (0.34 vs 0.27mg/kg) but both were not statistically different (*p=0.1379 and p=0.2793 respectively). However, total Tylenol dosing (81.4 vs 63.2 mg/kg) was significantly decreased after instituting the pain protocol (*p=0.0014).

CONCLUSIONS: In this pilot study of post-operative palatoplasty patients, we identified a downward trend in overall pain scores and total morphine use. Interestingly, we saw a significant decrease in overall acetaminophen use. This is likely attributed to the scheduled IV acetaminophen dosing of the pain protocol. A multidisciplinary approach to post-operative pain management in this subset of patients is showed a promising downward trend in overall pain scores and medication usage.

RECOVERY TIME AND COMPLICATIONS AFTER ILLIAC CREST BONE GRAFT HARVEST FOR ALVEOLAR CLEFT BONE GRAFTING
Erika Henkelman (1), Emily Liu (1), Damir Matic (1). (1) London Health Sciences Centre, Western University, London, Ontario
Contact Email: erika.henkelman@utoronto.ca

BACKGROUND & PURPOSE: Use of the iliac crest for secondary bone grafting of alveolar clefts has been criticized for unacceptable donor site morbidity and a long recovery, leading surgeons to investigate alternatives. However, this perception does not coincide with our experience. The purpose of this study is to review our outcomes and patients’ experiences with open iliac crest bone harvest for alveolar bone grafting, and to compare the complication rates and recovery times to the literature.

METHODS & DESCRIPTION: A retrospective chart review was performed to determine recovery time, complications, and outcomes for all patients who had secondary bone grafting from the iliac crest for alveolar cleft closure. A questionnaire was administered to patients who underwent the surgery within 3 years to determine subjective recollections of the recovery experience. In addition, a literature search was performed in order to compare similar approaches as well as alternative techniques.

RESULTS: Seventy patients met inclusion criteria for the chart review and 40 questionnaires were completed. Inpatient stays averaged 26 hours, with 92% of patients being discharged the day after surgery. There were no major donor site complications. Minor complications included 2 patients with superficial infections which resolved with oral antibiotics, and 2 with ongoing but non-limiting discomfort at the donor site scar. Fifty-eight percent of patients had only mild and well-controlled post-operative pain. Our most recent patients required minimal narcotic analgesics (0.4 mg/kg of codeine equivalents), with only 1 patient of 25 requiring intravenous breakthrough analgesia. Eighty percent of questionnaire respondents recalled limping for less than a week, and 95% of patients were back to full activity within 1 month of surgery. The complication profile and recovery times of patients with open iliac crest bone harvest compared favorably to those of other cleft sites and were comparable to minimally invasive approaches.

CONCLUSIONS: Open iliac crest bone graft harvest for repair of alveolar clefts is a well-tolerated procedure, with acceptable recovery times, and with a favorable complication profile. The procedure should continue to be considered the optimal donor site in this patient population.

PATIENT PERCEPTIONS OF PERIOPERATIVE CARE FOLLOWING ILLIAC BONE GRAFTING SURGERY: A SURVEY BASED STUDY OF PATIENTS TREATED IN A LARGE ACADMIC MEDICAL CENTER
Contact Email: bianca.chin@uphs.upenn.edu

BACKGROUND & PURPOSE: An understanding of patient perception and experience is of paramount importance in quality improvement initiatives. Large academic institutions are often the center of team based cleft care. Given the abundance of resources these institutions often provide the optimal environment for treating complex care issues; however, they often suffer from depersonalization and inconsistency given numerous providers with varied training and experience. Here we survey patients undergoing iliac bone grafting at our institution to appreciate patient and parent perspective on perioperative care.

METHODS & DESCRIPTION: All patients undergoing iliac bone grafting from January 1, 2011 until present were included. Using RedCap (cite) a total of 72 patients completed the electronic survey providing information regarding pain scores at the donor and recipient sites, narcotic requirement and duration, hospital days, lost school days. On a scale from 1 to 5, with 5 being the best, we asked patients to rate their recovery compared to their expectations. We also included a question about financial stress associated with the procedure, hospitalization, and recovery experience.

RESULTS: According to surveyed patients: mean hospital stay was 1.2 days with 75% of patients staying a day or less in the hospital after surgery. 67% of patients reported oral narcotic medication for an average of 3 days post discharge. 51% of patients reported the iliac crest donor site to be more painful than expected, and 12% reported the recipient site (19%) with an average pain score of 5.2 out of 10. 95% of patients were comfortable with their child’s discharge from the hospital. 57% of patients were out of school for more than 5 days. 7% of patients reported significant nausea, 5% reported vomiting after discharge, and 11% reported prolonged difficulties with oral intake. 7% identified difficulties with their oral splint. On the 1 to 5 scale for satisfaction with outcomes, patients responded accordingly. With respect to their surgery overall, 45% scored a 5, 24% scored a 4, and 17% scored a 3. With respect to their overall recovery, 51% scored a 5, 26.4% scored a 4, 20 % scored a 3, and 1.2% scored a 2. Regarding utility of perioperative counseling, 52.8% scored a 5, 34.7% scored a 4, 6.9% scored a 3, 14% scored a 2 and 1.4%scored a 1. With parent comfort with discharge, 58.3 percent scored a 5, 30.6% scored a 4, and 11.1 % scored a 3. With respect to coordination of care in the hospital, 55.6% scored a 5, 29.2% scored a 4, 13.9% scored a 3, and 1.4% scored a 1. When asked about financial stress associated with the procedure and hospitalization, 47% reported a 5 (no stress), 23.6% reported a 4, 27.8% reported a 3, and 1.4% reported a 2.

CONCLUSIONS: Here we provide a clear, concise survey-based summary of patient experience following iliac bone grafting. This data can be used to better counsel patients on expectations for their perioperative experience. Using this data, academic centers can identify areas for quality improvement. Resulting changes at our institution have included the implementation of a universal protocol amongst the entire cleft care team.

EARLY SURGICAL COMPLICATIONS AFTER PRIMARY LIP REPAIR- A REPORT OF 3108 CONSECUTIVE PATIENTS
Bjørn Schönmeyr (1), Lisa Wendby (2), Alex Campbell (2). (1) Skane University Hospital, Malmo, Skåne County, (2) Operation Smile, Virginia Beach, VA
Contact Email: bjornschon@gmail.com

BACKGROUND & PURPOSE: Conflicting data is found in the literature regarding the definition and incidence of surgical complications following primary cleft lip repair. This study retrospectively analyzed complications from primary cleft lip repair at a high volume cleft center in a developing region.

METHODS & DESCRIPTION: All patients undergoing primary cleft lip repair with 2062 follow-ups were reviewed retrospectively through medical records. Documented complications in terms of dehiscence, necrosis, infection, and suture granuloma were compiled. Logistic regression was used with dehiscence (yes/no) or infection (yes/no) as binary dependent variables. Age, cleft type and surgeon (visiting/long term) were used as covariates.

RESULTS: Patients were aged 3 months – 75 years at the time of surgery with a mean age of 7 years. Among the 2062 patients that returned for early
BACKGROUND & PURPOSE: In the US, cleft palate repair typically occurs during the first 9-18 months of life and almost always involves hospital admission to monitor the child’s recovery. There has been a recent surge in cleft-related surgery, which has resulted in an increase in hospital length of stay (LOS) for children after surgery. Understanding the factors associated with increased hospital stay for all patients can help define strategies for decreasing hospital stay for all patients.

METHODS & DESCRIPTION: This is a retrospective single-surgeon review of 70 consecutive primary palate repairs. Discharge criteria for all included 1) no significant bleeding/drainage, 2) pain control via oral medicine, and 3) intake of maintenance fluid requirements. Demographic and peri-operative information related to palate repair were reviewed. Hospital LOS was determined in relation to different perioperative factors such as the use and timing of narcotics, steroids, surgery length, and surgical method.

RESULTS: Multiple cleft types were represented: Veau I+II = 29, Veau III = 19, Veau IV = 13, and submucous cleft palate (SMCP) = 9. Post-operative LOS ranged from 18-72 hours. 81.4% of all patients required 24+ hours of hospitalization before meeting discharge criteria. 25.7% required 48+ hours. Patients with SMCP were much older at the time of surgery, on average 4.75 years compared with the other cleft types: Veau I+II = 12.4 months, Veau III = 14.8 months, and Veau IV = 20.6 months. 3 of the 70 patients had g-tubes and went home in <24 hours. 3 patients had to be re-intubated and required ICU admission. Excluding these outliers, the SMCP group averaged a 6 hour shorter hospital stay compared with the others at 32 hours compared with 38 hours. There was an inverse relationship between cleft type and shorter LOS: Veau IV: 35.2 hours, Veau III: 37.9 hours, and Veau I: 39.3 hours. There was no obvious correlation with dosing of intra-operative steroids or fentanyl in relation to LOS. Patients who received intra-operative morphine, however, stayed an average 40.6 hours compared with 36.7 hours for those who did not. Those receiving morphine also had longer PACU stays and longer average time until first PO intake. There was no overall association, though, between first oral intake and LOS.

CONCLUSIONS: The data suggests SMCP and Veau IV clefts may be anticipated to require shorter LOS than Veau I, II, and III clefts. Intra-operative morphine, compared with fentanyl, may slow recovery but the reasons for this disparity are not clear. It is clear the majority of cleft palate repairs require more than a 23 hour admission before achieving adequate pain relief and oral intake. This should discourage attempts at shortening pre-admission plans for these procedures.

190
FACTORS AFFECTING DURATION OF ADMISSION AFTER PRIMARY PALATOPLASTY
Peter Olaitan (1), Stephen Poteet (2), Gregory Pearson (3), Adriane Baylis (3), Richard Kirschner (3), (1) Nationwide Children Hospital, Columbus, OH, (2) Nationwide Childrens Hospital, Columbus, OH, (3) Ohio Childrens, Columbus, OH (1) Nationwide Children’s Hospital, Columbus, OH
Contact Email: pboelaitan@gmail.com

BACKGROUND & PURPOSE: Most infants may be safely discharged from the hospital within 24 hours of primary palatoplasty. However, some require hospital admission longer than 24 hours, typically due to poor oral intake, poor pain control, or other factors. The aim of this study was to determine the factors that contribute to delay in discharge of children following cleft palate repair.

METHODS & DESCRIPTION: A retrospective review was performed of patients aged two years and younger who underwent primary cleft palate repair between January 2010 and December 2013 at a single center. Patients undergoing secondary palate repair were excluded from analysis. A variety of relevant demographic and clinical variables were examined, comparing those infants discharged within 24 hours to those that required hospital stays. The data were analyzed using Chi-squared analysis, with a p-value of 0.05.

RESULTS: A total of 104 children met the inclusion criteria, 46 (44.2 %) male and 58 (55.8 %) female. Mean age at palatoplasty was 13.1 ± 3.5 months. Mean duration of anesthesia was 119.6 ± 31.5 minutes. Thirty six (34.6%) of the patients required hospitalization for more than 24 hours following surgery; the remainder (65.4%) were discharged within 24 hours. Increased duration of anesthesia (p=0.12), decreased narcotic use (p=0.09), and decreased oral intake (p=0.07) were observed among the children with a prolonged hospital stay; however, these differences only approached statistical significance.

CONCLUSIONS: These data demonstrate that age at primary palatoplasty may significantly influence length of stay after surgery, with older children requiring longer hospitalization. The duration of anesthesia, post-operative narcotic administration, oral intake, and adoption status may be additional factors that influence the timing of hospital discharge.
SCALABLE, SUSTAINABLE COST-EFFECTIVE SURGICAL CARE: A MODEL FOR SAFETY AND QUALITY IN THE DEVELOPING WORLD

Alex Campbell (1), Carolina Restrepo (1), Donald R. Mackay (2), Randy Sherman (3), Ajit Varma (1), Ruben Ayalia (4), Hitseswar Sarma (5), Gaurav Deshpande (6), William Magee (1), (2) Operation Smile, Virginia Beach, VA, (2) Milton S Hershey Medical Center, Hershey, PA, (3) Cedars Sinai Medical Center, Los Angeles, CA, (4) Operation Smile, Virginia Beach, VA, (5) Guwahati Comprehensive Cleft Care Centre, Guwahati, Assam, (6) Guwahati Comprehensive Cleft Care Center, Guwahati, Assam

Contact Email: alexcampbellmd@gmail.com

BACKGROUND & PURPOSE: With an estimated backlog of 4,000,000 patients worldwide, cleft lip and cleft palate remain a stark example of the global burden of surgical disease. The need for a new paradigm in has been increasingly recognized to exponentially expand care while emphasizing safety and quality. This presentation examines the evolution of a specialty cleft surgery center in Northeast India as an innovative model for cleft care in the developing world.

METHODS & DESCRIPTION: This specialty center is the result of a unique public-private partnership between government, charity, and the corporate sector to create a center of excellence in cleft care for an underserved region. A state-of-the-art surgical facility and a needs-based approach were implemented to assemble infrastructure, teams, and systems capable of providing world-class care to the most needy of patients. The project utilized a diagonal model of surgical care delivery, with vertical inputs of mission-based care transitioning to investments in infrastructure and human capital to create a sustainable, local care delivery system. Progress was meticulously documented to evaluate performance and provide transparency to all stakeholders.

RESULTS: The center is open year round to offer full-time services and follow-up care. Along with complete surgical services, offerings include speech therapy, child life counseling, dental care, otolaryngology, orthodontics, and nutrition services for the cleft patients under one roof. Over the first 2.5 years of service (May 2011–November 2013), the center made significant advances in numerous areas, providing free operations to 7,034 patients. Results show enhanced safety, outcomes, and multidisciplinary services while dramatically decreasing costs and increasing investments in the local community. The center has become a regional referral cleft center, and governments of surrounding states have contracted the GCCCC to provide care for their citizens with cleft lip and cleft palate. Additional regional and global impact is anticipated through continued investments into education and training, comprehensive services, and research and outcomes.

CONCLUSIONS: This model utilizes a high-volume, subspecialized institution to provide scalable, sustainable, and cost-effective surgical care to a highly vulnerable patient population. The success of this public private partnership demonstrates the value of this model of surgical care in the developing world, and offers a blueprint for reproduction. Our experience has been consistent with previous studies demonstrating a positive volume-outcomes relationship, and provides evidence for the value of the specialty surgical hospital for improved surgical care in the developing world.

GLOBAL ONLINE TRAINING FOR CLEFT CARE – ANALYSIS OF INTERNATIONAL UTILIZATION

Derek Culnan (1), Aaron Oliker (2), Court Cutting (3), Roberto Flores (4). (1) IU Plastic Surgery, Carmel, IN, (2) New York University, New York, NY, (3) NYU Langone Medical Center, Institute of Plastic and Reconstructive Surgery, New York, NY, (4) NYU Langone Medical Center, New York, NY

Contact Email: dculnan@comcast.net

BACKGROUND & PURPOSE: We have produced a freely available, web-based, multimedia surgical simulator in partnership with Smile Train which demonstrates the cardinal procedures in primary cleft surgery. This tool is intended to help surgeons in developing countries care for their local cleft populations. Limitations—internet access and local technology may hinder use in the developing world. We report on the international utilization of the world’s first internet-based cleft simulator.

METHODS & DESCRIPTION: The Smile Train Virtual Surgery Simulator contains an internal tracking system which records the unique Internet Protocol (IP) addresses all users. Using these IP addresses, each country accessing the Simulator was identified over a one year period. All users accessing the Simulator for less than 5 minutes were eliminated. The countries were analyzed based upon economic factors such as Gross Domestic Product (GDP) and per capita income (PCI) as well as health metrics such as health expenditures and underweight children.

RESULTS: There were 849 novel users of the Simulator from 78 countries were recorded over the one-year study period. Those countries represent 6.28 billion persons or 88.5% of the global population. Of the countries utilizing the simulator 54 were classified as developing economies, representing 5.3 billion people. The developing countries average GDP was $467.4 ± 147 billion and PCI was $8,281 ± 815. The poorest developing countries accessing the Simulator in terms of PCI were Congo ($400), Ethiopia ($1,200), and Nepal ($1,300). In terms of percent population living below the poverty line, the poorest countries accessing the simulator were Haiti (80%) Congo (71%) and Nigeria (70%). In developing countries, the health expenditures as a percentage of GDP averaged 6.1%. The nations with the lowest healthcare expenditures as a percentage of GDP were Myanmar 2%, Pakistan 2.2%, and Indonesia 2.6%. Penetration into advanced economies was also extensive including 24 countries representing 979 million people and an aggregate GDP of $40.98 Trillion. In the United States the simulator was used in 40 states from both academic and community Internet service providers. Surprisingly, the simulator was used in 21 countries with active armed conflicts and 28 where the US State Department advises against travel including Ukraine, Egypt, Yemen, Iraq and Nigeria.

CONCLUSIONS: The presented internet-based surgical simulator is accessible globally and has quickly gained use in 78 countries representing 88% of the global population including 5.3 billion of the worlds developing population. Over 2/3rds of the countries accessing the simulator are developing nations and include regions experiencing severe poverty. Projects directed towards international education of cleft care in the developing world should strongly consider the use of web-based digital technology as a means to immediately access and educate caregivers, particularly in countries with significant economic and political constraints.

Disclosure: Receipt of Intellectual Property Rights/Patent Holder - Aaron Oliker holds the intellectual property rights for the biodigital surgery simulator.
BACKGROUND & PURPOSE: Healthcare today demands judicious use of antibiotics in primary palatoplasty. This study sought to ascertain the current practice patterns, review a large, single-surgeon experience, and propose guidelines for the thoughtful use of antibiotics in primary palatoplasty.

METHODS & DESCRIPTION: A six-question survey was emailed to all surgeon members of the ACPA (28% responded to the survey). 85% of respondents administer prophylactic antibiotics. 26% use a single preoperative dose. 23% give up to 24 hours of postoperative therapy; 12% use 25-72 hours; 16% use 4-5 days; 12% use 6-10 days of preoperative antibiotics. The antibiotic given for prophylaxis was penicillin for 5% of surgeons, a first generation cephalosporin for 64%, ampicillin/subbacam for 13%, and clindamycin for 8%. 89% of surgeons give prophylactic antibiotics for revision palatoplasty procedures. Case Series: 311 patients were reviewed; and, 173 patients received antibiotics and 138 did not. Delayed healing and fistula rates did not differ between groups: 13.3% vs 10.9% (p=0.71) and 2.3% vs 1.4% (p=0.47) respectively. One Group 2 patient received no preop antibiotic, and developed an early postop, persistent Group A, beta-hemolytic streptococcal bacteremia requiring antibiotic treatment. After review by our infectious disease colleagues, the case did not meet the CDC definition of a surgical site infection, but the patient subsequently developed a palatal fistula on follow-up.

CONCLUSIONS: There is no consensus amongst practitioners regarding the appropriate use of antibiotics (agent or duration) in primary palatoplasty. Our data supports a clinician’s choice to forego prophylactic antibiotic use; however, given the significance of postop palatal fistulae, and our single case experience of postoperative streptococcal bacteremia, the study group recommends a single preop dose of ampicillin/subbacam. The current evidence cannot justify the use of prolonged postoperative antibiotic regimens.

Contact Email: mazzarru@yahoo.es

187 ROLE OF ANTIMICROBIALS IN CLEFT PALATE SURGERY: PROSPECTIVE, DOUBLE BLIND, RANDOMIZED, PLACEBO-CONTROLLED CLINICAL STUDY

Maria Aznar (1), Björn Schönny, Maria Acantha (3), Lismore Nebeker (3), Lisa Wendby (3), Alex Campbell (3), (1) Hospital Universitari Vall d’Hebron, Barcelona, Catalonia, (2) Skane University Hospital, Malmo, Skåne County, (3) Operation Smile, Virginia Beach, VA

BACKGROUND & PURPOSE: This study is a prospective, double blind, randomized, placebo-controlled trial composed of 518 consecutive patients who underwent primary cleft palate repair at a single institution. Patients were 1-43 years at the time of surgery with a median of 9 years. The patients were randomly divided into two groups. One group received a 5-day regimen of oral Amoxicillin (50 mg/kg) postoperatively and the other group received placebo medication. Both groups received a single dose of Cefuroxime (30 mg/kg) perioperatively prior to incision. Both patients and providers were blinded to the randomization during the trial. Patients were followed postoperatively for early complications, in terms of infection and wound breakdown, as well as for late complications in terms of palatal fistulas.

METHODS & DESCRIPTION: The incidence of early complications was 13.8% among the patients in the placebo group and in 8.7% of the patients in the antibiotic group (p=0.175). Late complications in terms of fistulas were noted in 17.1% of the patients in the placebo group and in 10.7% of the patients in the treatment group (p=0.085). Logistic regression analysis identified visiting surgeons as the only covariate related with early complications (OR 3.71, p<0.001). However, the use of placebo, female gender and complete clefts were observed as factors associated with the incidence of late complications (fistulas) (OR 2.09, p<0.001). In the placebo group, 10.9% (p=0.71) and 2.3% vs 1.4% (p=0.47) respectively. One Group 2 patient developed a palatal fistula on follow-up.

CONCLUSIONS: Our results indicate that postoperative antibiotic prophylaxis, to some extent can reduce the incidence of fistulas after primary cleft palate repair.

Contact Email: obiriyeb@yahoo.com

188 ADULT CLEFT LIP REPAIR UNDER LOCAL ANAESTHESIA: THE GHANA EXPERIENCE

Solomon Obiri-Yeboah (1), Alexander Otie Acheampong (2), Samuel Ansah (2), Peter Ray (3), John Grant (3), Peter Donkor (1). (1) Komfo Anokye Teaching Hospital, Kumasi, Ghana, (2) Komfo Anokye Teaching Hospital, Kumasi, Ashanti Region, (3) University of Alabama, Birmingham, Birmingham, AL

BACKGROUND & PURPOSE: Unlike developed countries where adult primary cleft lip and palate are nearly nonexistent, developing countries still have a backlog of adults with unrepaired cleft lip and palate. Developing countries

antibiotics. 26% use a single preoperative dose. 23% give up to 24 hours of postoperative therapy; 12% use 25-72 hours; 16% use 4-5 days; 12% use 6-10 days of postoperative antibiotics. The antibiotic given for prophylaxis was penicillin for 5% of surgeons, a first generation cephalosporin for 64%, ampicillin/subbacam for 13%, and clindamycin for 8%. 89% of surgeons give prophylactic antibiotics for revision palatoplasty procedures. Case Series: 311 patients were reviewed; and, 173 patients received antibiotics and 138 did not. Delayed healing and fistula rates did not differ between groups: 13.3% vs 10.9% (p=0.71) and 2.3% vs 1.4% (p=0.47) respectively. One Group 2 patient received no preop antibiotic, and developed an early postop, persistent Group A, beta-hemolytic streptococcal bacteremia requiring antibiotic treatment. After review by our infectious disease colleagues, the case did not meet the CDC definition of a surgical site infection, but the patient subsequently developed a palatal fistula on follow-up.

CONCLUSIONS: There is no consensus amongst practitioners regarding the appropriate use of antibiotics (agent or duration) in primary palatoplasty. Our data supports a clinician’s choice to forego prophylactic antibiotic use; however, given the significance of postop palatal fistulae, and our single case experience of postoperative streptococcal bacteremia, the study group recommends a single preop dose of ampicillin/subbacam. The current evidence cannot justify the use of prolonged postoperative antibiotic regimens.

Contact Email: mazzarru@yahoo.es

187 ROLE OF ANTIMICROBIALS IN CLEFT PALATE SURGERY: PROSPECTIVE, DOUBLE BLIND, RANDOMIZED, PLACEBO-CONTROLLED CLINICAL STUDY

Maria Aznar (1), Björn Schönny, Maria Acantha (3), Lismore Nebeker (3), Lisa Wendby (3), Alex Campbell (3), (1) Hospital Universitari Vall d’Hebron, Barcelona, Catalonia, (2) Skane University Hospital, Malmo, Skåne County, (3) Operation Smile, Virginia Beach, VA

BACKGROUND & PURPOSE: This study is a prospective, double blind, randomized, placebo-controlled trial composed of 518 consecutive patients who underwent primary cleft palate repair at a single institution. Patients were 1-43 years at the time of surgery with a median of 9 years. The patients were randomly divided into two groups. One group received a 5-day regimen of oral Amoxicillin (50 mg/kg) postoperatively and the other group received placebo medication. Both groups received a single dose of Cefuroxime (30 mg/kg) perioperatively prior to incision. Both patients and providers were blinded to the randomization during the trial. Patients were followed postoperatively for early complications, in terms of infection and wound breakdown, as well as for late complications in terms of palatal fistulas.

METHODS & DESCRIPTION: The incidence of early complications was 13.8% among the patients in the placebo group and in 8.7% of the patients in the antibiotic group (p=0.175). Late complications in terms of fistulas were noted in 17.1% of the patients in the placebo group and in 10.7% of the patients in the treatment group (p=0.085). Logistic regression analysis identified visiting surgeons as the only covariate related with early complications (OR 3.71, p<0.001). However, the use of placebo, female gender and complete clefts were observed as factors associated with the incidence of late complications (fistulas) (OR 2.09, p<0.001). In the placebo group, 10.9% (p=0.71) and 2.3% vs 1.4% (p=0.47) respectively. One Group 2 patient developed a palatal fistula on follow-up.

CONCLUSIONS: Our results indicate that postoperative antibiotic prophylaxis, to some extent can reduce the incidence of fistulas after primary cleft palate repair.

Contact Email: mazzarru@yahoo.es

188 ADULT CLEFT LIP REPAIR UNDER LOCAL ANAESTHESIA: THE GHANA EXPERIENCE

Solomon Obiri-Yeboah (1), Alexander Otie Acheampong (2), Samuel Ansah (2), Peter Ray (3), John Grant (3), Peter Donkor (1). (1) Komfo Anokye Teaching Hospital, Kumasi, Ghana, (2) Komfo Anokye Teaching Hospital, Kumasi, Ashanti Region, (3) University of Alabama, Birmingham, Birmingham, AL

BACKGROUND & PURPOSE: Unlike developed countries where adult primary cleft lip and palate are nearly nonexistent, developing countries still have a backlog of adults with unrepaired cleft lip and palate. Developing countries
experience significant challenges in terms of general anesthesia cost, time, and available providers. The design and use of a safe, effective, and inexpensive local anaesthesia protocol for the repair of cleft lip is an important component of a cleft practice in a developing country. This review captures our approach in our center located in Ghana.

METHODS & DESCRIPTION: A retrospective review of non-pediatric primary and secondary cleft lip repair was performed. Patients, who underwent repair using local anaesthesia between 2012 and April, 2014 were included. This technique was used on adolescents and adults aged 13 and above with microform, unilateral or bilateral cleft lip. Patients were further screened for the ability to understand and tolerate local anaesthesia. Infraorbital nerve blocks were used in the majority of cases with bilateral blocks used in those with complete clefts. Informed consent was obtained from both patients and their guardians. Patients who were not medically fit or were deemed at screening to be unable to tolerate the procedure while awake were excluded. Demographic information and outcome data were collected including average time in the operating room, surgical time, and day of discharge.

RESULTS: We identified thirty three adolescents and adults comprised of eighteen females and fifteen males. Twenty six of the patients presented with unilateral cleft lip of which only three were complete; two bilateral cleft lip and five were lip revisions. The lowest age was Thirteen years (two patients) and the highest age was Sixty-Six years (one patient). The mean weight was 54kg. The mean anesthetic time including waiting time was 12.94 minutes and mean operation time was 56.52 minutes. The majority of the patients were discharged the same day except for five who needed to stay overnight because of distance from their home. There were no reported early postoperative complications and wound healing was uneventful for all the patients.

CONCLUSIONS: Cleft lip repair in adults under local anaesthesia is safe, effective and inexpensive. A modification in technique with minimal dissection and efficiency is essential in such cases.

AN INTRODUCTION TO THE CARE OF THE CHILD WITH A CLEFT: THE FIRST YEAR OF LIFE

Noreen Clarke (1), Alexis Johns (1), Karla Haynes (1), Daniela Schweitzer (1), Howell Lori (1), Yvonne Gutierrez (1). (1) Children’s Hospital Los Angeles, Los Angeles, CA

Contact Email: nclarke@chla.usc.edu

BACKGROUND & PURPOSE: Children born with cleft lip and/or palate receive optimal care when they are assessed and treated by a multidisciplinary team of providers. Disciplines often involved in the care of children with clefts include: nursing, plastic surgery, genetics, pediatrics, pulmonology, otolaryngology, audiology, speech language pathology, dentistry, orthodontics, nutrition, psychology, and social work. There are many challenges in the first year of life, including possible feeding and breathing issues, frequent appointments, and multiple surgeries. Families’ understanding and ability to follow through with treatment plans can be influenced by cultural and socioeconomic factors. The first year of life is a critical time for team members to coordinate care, provide education, address genetic concerns, and assist with support and coping skills.

METHODS & DESCRIPTION: A multidisciplinary panel of experts will describe the role each discipline plays in the care of children and families affected by clefting. We will introduce family centered multidisciplinary team care for the child who was diagnosed prenataly or neonatally with a cleft, with an emphasis on the role of nursing and care coordination. ACPA Standards for Cleft Palate and Craniofacial Teams will be incorporated across disciplines. Common psychosocial issues and corresponding interventions will be discussed. Information about the delivery of culturally competent care to diverse families and socioeconomic groups will be addressed.

DEVELOPING ALGORITHMS FOR TRAINING AND INDEPENDENCE IN CLEFT CARE IN THE DEVELOPING WORLD: AN OASIS IN THE SAND

John van Aalst (1), Omri Emodi (2), Rushdi Amr (3), Christopher Gordon (4), Ann Schwengkter (5), Haitham El-Hady Babiker (1). (1) Cincinnati Children’s Hospital, Cincinnati, OH, (2) Rambam Medical Center, Haifa, Israel, (3) Hebron, Private Practice, Hebron, Palestine, (4) Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, (5) Cincinnati Children’s Medical Center, Cincinnati, OH

Contact Email: johnavanalst@chmodc.org

BACKGROUND & PURPOSE: The developed world sends volunteer surgical teams to the developing world at an astonishing rate. At a quick glance, the two largest cleft organizations report 220,000 free surgical procedures completed while working in over 60 countries (Operation Smile) and completion of over a million surgeries in 87 countries (SmileTrain). In addition, Resurge works in 13 countries; Transforming Faces (Canada) works in 8 countries. The US has at least 22 listed organizations involved in international cleft care, the UK 3, with an additional 13 countries having at least a single organization devoted to providing free cleft care. In reality, this list is considerably longer; scores of smaller organizations perform cleft care around the world, but without a definitive, comprehensive list of their existence. The emphasis for many of these organizations—though possibly unintentional—is simply the number of trips taken and the surgeries completed. There is little focus on outcomes, best care, training local practitioners, creating independent local cleft organizations, and clearly defining exit strategies for the parent organization. At a time when the word “sustainable” is used by nearly everyone in international health care, do we truly understand how to build sustainable surgical (or team-based) cleft programs in the developing world?

METHODS & DESCRIPTION: The panelists for this discussion bring together cleft care expertise in Africa, the Middle East, and Latin America, and will attempt to provide answers regarding the following questions: How to identify local professionals with a commitment to cleft care? Define sustainability, from the visitor’s or host’s perspective? Establish metrics for training local professionals? Create a surgical program (or any another discipline) supplemented with telemedicine, video and teleconferencing, workshops and conferences. Determine benchmarks for completion of training? Establish an independent local/national cleft organization? Leave gracefully by developing an exit strategy? In summary, the panel will define a training algorithm for surgical work overseas (with metrics for completion of training), demonstrate the value of creating a national cleft organization in each country where outreach work is performed, and examine the benefit of an exit strategy.

VALUATION OF DIRECT SURGICAL REMODELING OF FRONTAL BOSSING IN PATIENTS WITH SAGITTAL SYNOSTOSIS

Debra Yen (1), Gary Skolnick (2), Dennis Nguyen (1), Sybil Naidoo (3), Kamlesh Patel (4), Matthew Smyth (5), Alex Kane (6), Albert Woo (5). (1) Washington University School of Medicine, St. Louis, MO, (2) Washington University School of Medicine, Saint Louis, MO, (3) Washington University School of Medicine, St Louis, MO, (4) Washington University in St. Louis, St. Louis, MO, (5) Washington University in St. Louis School of Medicine, Saint Louis, MO, (6) University of Texas Southwestern Medical Center, Dallas, TX

Contact Email: yend@wsum.wustl.edu

BACKGROUND & PURPOSE: The need for surgical correction of frontal bossing in patients with sagittal synostosis is currently debated. We retrospectively assessed frontal bossing in patients with isolated, nonsyndromic sagittal synostosis who underwent calvarial remodeling with and without frontal craniotomy. These groups were compared against each other and control subjects.

METHODS & DESCRIPTION: We analyzed computed tomography (CT) scans of patients with months of synostosis from 1-8 years postoperatively. Patients, who underwent modified-pi procedure either with frontal craniotomy (FC, n=16) or without frontal craniotomy (NFC, n=10). Only patients treated between 2003-2013 with both preoperative and one-year postoperative CT scans were included. Non-synostotic age-matched control scans were also analyzed. Cephalic index (CI) and three previously validated measures of frontal bossing (bossing angle, horizontal bossing ratio, and vertical bossing ratio) were obtained. Additionally, three-dimensional photographs of ten FC patients were evaluated for frontal bossing between 1-8 years postoperatively.

RESULTS: Preoperatively, no significant differences were found between the two groups (0.064<p<0.940). Both groups showed greater saphocephaly and frontal bossing compared to controls (p<0.001). One-year postoperatively, all measures improved but remained significantly different than normal values except: CI of NFC patients (p=0.296); bossing angle (p=0.068) and horizontal bossing ratio (p=0.129) of FC patients. Compared to NFC patients, horizontal bossing ratio was significantly improved in FC patients (p=0.017, mean difference of 0.047). No other statistically significant differences were found between the two techniques (0.127<p<0.637). In our long-term study of FC patients up to 9 years of age (n=10), we analyzed forehead inclination as our measure of frontal bossing in three-dimensional photographs. A linear regression analysis showed a significant reduction in forehead inclination with age, decreasing 1.3±0.4 degrees per year (p=0.021). Forehead inclination for controls did not change significantly with age (p=0.558).

CONCLUSIONS: At one-year following modified-pi procedure, FC patients approached normalization of their forehead morphology to a greater extent than NFC patients. However, neither group completely normalized during this time period. Frontal bossing in FC patients continued to decrease with age, which reveals the postoperative dynamic nature of frontal bone morphology during childhood for these patients.
308

ASCFS LINTON A. WHITAKER LECTURE: CRANIOSYNOSTOSIS

Jeffrey Fearon (1). (1) The Craniofacial Center, Dallas, TX

Contact Email: cranio700@gmail.com

BACKGROUND & PURPOSE: The American Society of Craniofacial Surgery Foundation is pleased to sponsor the third Linton A. Whitaker Lecture. The Lecture recognizes Dr. Whitaker’s years of service to the specialty of craniofacial surgery and his mentorship and education of a generation of plastic surgeons.

METHODS & DESCRIPTION: Dr. Fearon will review the etiology, functional implications, historical and current treatments of craniosynostosis. He will also address the outcomes of treatment.

309

TIMING OF THE SURGICAL MANAGEMENT OF NON-SYNDROMIC CRANIOSYNOSTOSIS

Joseph Losee (1), John Persing (2), Jeffrey Fearon (3), Jesse Taylor (4), Jack Yu (5), Richard Hopper (6), Mark Urata (7). (1) University of Pittsburgh Medical Center, Pittsburgh, PA, (2) Yale, New Haven, CT, (3) The Craniofacial center, Dallas, TX, (4) The Children’s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, (5) Georgia Regents University, Augusta, GA, (6) Seattle Children’s Hospital, Seattle, WA, (7) Children’s Hospital, Los Angeles, Los Angeles, CA.

Contact Email: Joseph.Losee@chp.edu

BACKGROUND & PURPOSE: The ASCFS Panel on Saturday morning will focus on the timing of the surgical management of non-syndromic craniosynostosis. METHODS & DESCRIPTION: Panelists will review the current research and provide recommendations for early surgery, late surgery, alternative options, and will present the current evidence available. Invited discussants will summarize the presentations and ensure lively discussion with the audience.

310

KEYNOTE: THE BIRTH, DEVELOPMENT AND FUTURE PROSPECTS FOR CRANIOFACIAL BIOLOGY

Harold Slavkin (1). (1) University of Southern California School of Dentistry, Los Angeles, CA.

Contact Email: slavkin@usc.edu

BACKGROUND & PURPOSE: Throughout the genesis of the human face, facial expressions and the various sensory functions performed within the craniofacial-oral-dental complex - - vision, hearing, speech, taste, chewing and touch - - - have created awe and wonder, pain and suffering, and the advent of remarkable health care for craniofacial birth defects as well as acquired craniofacial malformations resulting from trauma, burns, infections and head and neck cancers. Understanding craniofacial diseases and disorders has been punctuated by protein-calorie malnutrition, vitamin deficiencies, drug-induced birth defects (teratology), a number of wars that engendered profound advances in craniofacial imaging, surgery, and biomaterials based upon biomimetics, along with physical and behavioral rehabilitation, resulting in improvements for the diagnosis, treatment and clinical outcomes of “broken faces.” More recently, investments in fundamental biomedical research - - human genetics and developmental and molecular craniofacial biology--- have changed the landscape and now suggest therapeutic strategies for a number of craniofacial skeletal and soft tissue malformations. Enter regenerative medicine and dentistry, personalized medicine and dentistry, and precision health care.

METHODS & DESCRIPTION: This presentation will provide an assessment and celebration of our past, present and future prospects for craniofacial biology and the human condition. Where did we come from? Who are we? Where are we going? This keynote address will conclude with basic, translational and clinical biological and behavioral research priorities related to craniofacial birth defects and craniofacial acquired malformations. The genesis of craniofacial and the story of the human face have important implications for both research, health professional education, and trans-professional, patient-centered, outcomes-based, comprehensive, quality and cost-effective health care for all people.

312

LONG TERM OUTCOMES OF CRANIOFACIAL MICROSOMIA TREATMENT: MANDIBULAR RECONSTRUCTION

Rachel Mandelbaum (1), Deborah Martins (1), Emily Dubina (1), Sarah Park (2), James Bradley (1), Justine Lee (2), (1) David Geffen School of Medicine at UCLA, Los Angeles, CA, (2) David Geffen School of Medicine, UCLA, Los Angeles, CA.

Contact Email: rachelmandelbaum@gmail.com

BACKGROUND & PURPOSE: Craniofacial microsomia is a rare congenital anomaly characterized by mandibular hypoplasia, microtia/atresia, facial nerve weakness, and soft tissue deficiencies. Due to the wide phenotypic spectrum seen, treatment plans are highly individualized and have historically been difficult to evaluate, leaving significant knowledge gaps about the optimal timing of treatment and surgical approach. METHODS & DESCRIPTION: Retrospective review of patients with a diagnosis of craniofacial microsomia treated at the UCLA Craniofacial Clinic (n=151) between 2008-2014. Patients >14 years of age at the time of study initiation were included (n=42). Characteristics of the mandibular deformity, operative strategies, and complications were reviewed and analyzed.

RESULTS: The average age of the 42 patients included was 18.3 years (range 15-25). 35 patients (83.3%) had mandibular malformations, of which 22.9% were affected bilaterally, 40.0% were affected on the right, and 37.1% were affected on the left. In terms of severity of mandibular hypoplasia, 58.1% were classified as Pruzansky grade I, 20.9% Pruzansky IIa, 7.0% Pruzansky IIb, and 14.0% Pruzansky III. Facial nerve dysfunction was normal to mild in greater than 80%. Airway compromise was present as obstructive sleep apnea in 25.7%, necessitating tracheostomy or distraction in 22.9%. 14 patients (40.0%) underwent 58 orthognathic surgeries, with an average of 4.14 surgeries (range 1-7) per patient. 13 patients underwent mandibular distraction, the initial procedure performed in 64%. 8 patients underwent bilateral sagittal split osteotomy, 7 of which were performed following distraction, indicating a more severe presentation. In addition, 3 patients underwent rib graft, 3 patients underwent osseous genioplasty, and 3 patients underwent Le Fort I to correct maxillary defects. 64.3% of patients who received mandibular reconstruction concurrently underwent surgery for microtia/atresia. Patients began surgical intervention at an average age of 9.9 years. In a linear regression model, age, higher Pruzansky score, airway compromise, or simultaneous microtia reconstruction were not predictors of increased number of mandibular surgeries in the treatment regimen to achieve desired outcome or of surgery failure and the need for repeat operations. Facial nerve involvement was significantly associated with a greater number of surgeries performed.

CONCLUSIONS: In conclusion, facial nerve involvement was the only factor associated with greater number of surgeries required. Both the number of surgeries performed in the course of treatment and surgery failure requiring a repeat procedure were not associated with age, more severe presentation, airway compromise, or ear involvement. Patients with severe abnormalities or airway compromise did not begin treatment at a significantly younger age than those with milder presentations. Treatment failure was mainly dependent on external factors. The ideal age at which to begin mandible reconstruction requires further investigation.
Authors Index

Heike, Carrie..122, 134, 156, 212, 249, 265, 288
Heimdal, Ketil.......................................53
Heliovaara, Arja......................................31
Hekkelman, Erika....................................176
Hegyi, Csilla..77, 92, 262
Hermann, Nuno V................................111, 135
Hernandez, Cristina.................................80
Heuer, Greg..140
Hiebert, Jared..220
Hindin, David...115, 303
Hing, Hui...33
Ho, Emily...142, 204
Ho, Susan...122
Hoffman, Caitlin....................................204
Hokugo, Akishige.....................................9, 17, 125
Hollier, Larry...130
Hong, Paul...48
Honnebier, M Barbera..............................227
Hoover-Fong, Julie................................152
Hopkin, Robert......................................148, 280
Hopkins, Elena......................................31
Hornsby, Grant......................................91, 304
Hossain, Monir......................................130, 168
Hosseinian, Banafsheh.........................94, 210
Hosseinizadeh, Samaneh......................266
Hove, Hannie Dahlgaard.....................53
Howard, Thomas....................................88, 281
Huff, Helen..233, 240
Hui, Brian...299
Huizenga, Marcelle.................................101
Hukki, Jyri..53
Hunter, Magrine....................................131, 133, 306
Hussein, Murad......................................143
Hussain, Akhter.....................................110
Huynh, Nelly...106
Hynes, Sally...142
Inoue, Chisako.......................................251
Inouye, Joshua......................................87, 143
Iyengar, Rajiv..200
Jabbari, Fatima.....................................279
Jackson, Oksana..................................136, 175, 181
Jacobson, Ronald.................................73
Jacobson, Grant.....................................264
Jarrah, Reza...9, 17, 125
Jeelani, Yasser......................................162
Jiang, Shao...75, 211
Jin, Meiling...291
Jin, Xilian...115, 303
Johnson, Graham.................................22, 50, 70
Johns, Alexis.......................................21, 189, 234, 288, 290
Johns, Dana...29
Johnson, Adam.....................................220
Johnson, Jacob.....................................282
Johnston, James....................................128
Jones, Mary..14, 235
Jorge, Paula Karine...............................263
Kacmarynski, Deborah............................203
Kaipa, Ramesh......................................281
Kaiser, Ann..297
Kanack, Melissa....................................271
Kane, Alex...11, 15, 51, 135, 137, 292, 305
Kapadia, Hitesh.....................................89, 198
Kapp-Simon, Kathleen..........................4, 14, 100, 141, 288
Kapp, Isabelle.......................................171
Karnell, Michael...................................172
Kao, Jiyin...143
Kasten, Steve..46
Kato, William.......................................140
Katsaros, Christos.................................117, 307
Katzel, Evan...44
Kaye, Alison..75, 179, 211, 233, 242
Kazanoglu, V..149, 194
Kearney, L...41
Kerins, Carolyn.....................................205
Kesty, Kendra.......................................269
Khechayan, David.................................80, 184
Kilpatrick, Lauren.................................294
Kim, Byungjun......................................291
Kim, Elissa..235
Kim, Injoon..251
Kim, Jeongeun.......................................291
Kim, Sukwha...291
Kinter, Sara..3
Kirschner, Richard.................................65, 68, 83, 180
Klassen, Anne.......................................3
Klecha, Irene Soram...............................154
Kleefstra, Tijtse......................................57
Klein, Ophir..70
Kleintzer, Lauren.................................297
Klinge, Petra...43, 200
Knaus, Katherine R..............................110
Koh, Jeffrey...124, 175
Kollara, Lakshmi...................................84, 104, 105
Kollman, Kirk..73
Kolitz, Peter...311
Korsh, Jessica.......................................108
Kraemer, Gem.......................................5
Krebs, Elizabeth.....................................269
Kreiborg, Sven.......................................53, 111
Kuang, Anna...124, 175
Kuehn, David..2, 84, 104
Kuek, Meaw Charm.................................112
Kuijpers-Jagtman, Anne Marie..................21
Kumar, Anand......................................64, 114, 118, 192, 202, 243
Kummer, Ann..70
Kung, Theodore.....................................46
Kwiek, Grzegorz.....................................296
Lacour, Sophie......................................201
Lai, Li Han..299
Lakin, Gregory......................................41, 76
Langevin, Kerri.....................................149
Laub, Donald...13
Laughlin, Suzanne.................................204
Lauris, Rita De Cäsia..............................119
Le, Andrew..120
Leach, Deborah.....................................40
Lechtanski, Bethany.................................290
Lee, Amy..122
Lee, David...181
Lee, Jisan Mari.......................................291
Lee, Justine..115, 119, 299, 303, 312
Lee, Min Kyeong....................................218
Lee, Victoria...198
Lee, Wei Wei...163, 278
Lee, Yong..122
Leger, Stephanie....................................269
Lehman, James.....................................264
Leroux, Brian.......................................249, 288
Levine, Benjamin.................................258
Li, Andrew..9, 125
Li, Dong...151
Li, John...298
Li, Li...42
Libby, Maureen.....................................51
Lin, Alexander.....................................113, 131, 133, 170, 304, 306
Lin, Kuantai..45, 136
Linden, Olivia..43, 138
Linguraru, Marius.................................23
Link, Irene..76
Lippman-Hoskins, Bonita....................239
Lisson, Joerg...245
Liu, Emerson..71
Lloyd, Mark..80, 184
Lohani, Subhash....................................162
Long, Jeremy..4, 8, 14, 99, 107
Looi, Thomas..161
López-De Valle, Lydia.............................259
Lorij, howell...189, 303
Losee, Joseph......................................114, 46, 121, 123,
129, 186, 193, 210, 278, 309
2015 ANNUAL MEETING
Commercial Exhibitors

As of March 24, 2015, the following companies/organizations had registered to exhibit at our annual meeting. Those companies that are deserving of special recognition for providing educational support for this meeting have their listings bolded. Please take time to visit the exhibitors and thank them for their interest in participating in our meeting.

3dMD
3200 Cobb Galleria Parkway # 203
Atlanta, GA 30339
Tel: 770-612-8002
www.3dMD.com
3dMD provides high-precision 3D and 4D (60 fps) facial and head surface imaging systems with sophisticated 3D software for measurement, evaluation, planning, and outcomes assessment.

CRC Press/Taylor and Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487
Tel: 561-361-6000
www.crcpress.com
CRC Press (www.crcpress.com) is a global scientific, technical and medical publisher of award-winning titles in plastic and aesthetic surgery from Nahai, Rohrich, Fisher, Tonnard, Coleman and other leading experts.

Medical Modeling™
17301 West Colfax Avenue, Suite 300
Golden, CO 80401
Tel: 303-273-5344
www.medicalmodeling.com
3D Systems-Medical Modeling is a service company specializing in providing virtual surgical planning (VSP®), custom anatomical models and other implements for transfer of a digital clinical plan to the operating room.

Dr. Brown’s Medical by Handi-Craft Co.
4433 Fyler Ave
St. Louis, MO 63116
Tel: 314-445-3310
www.drbrownsbaby.com/medical
Dr. Brown’s Medical collaborates with NICU medical professionals to develop products demonstrating improved outcomes, delivery of effective care, and supporting a smooth transition home.

KLS Martin
PO Box 16369
Jacksonville, FL 32245
Tel: 904-641-7746
www.klsmartinnorthamerica.com
KLS Martin is a company dedicated to providing innovative medical devices and power systems for craniomaxillofacial surgery. The company’s rich history began with surgical instrument production in Tuttlingen, Germany in 1896 and continued with miniplate production in 1975. KLS Martin has advanced the capabilities of distraction osteogenesis, and revolutionized resorbable fixation with the SonicWeld Rx system.

The Medi-Kid Company, Inc
P.O. Box 5398
Hemet, CA 92544
Tel: 888-463-3543
www.medi-kid.com
The Medi-Kid Co. is the manufacturer and distributor of Pedi-Wraps arm immobilizers. Ideal post surgery to prevent touching sutures.

Canfield Imaging Systems
253 Passaic Avenue
Fairfield, NJ 07004
Tel: 973-276-0336
www.canfieldsci.com
Canfield is the leading developer of clinical imaging systems for plastic surgery, dermatology, medical research and skin care.

Cleft Palate-Craniofacial Journal/Allen Press
810 East 10th Street
Lawrence, KS 66044
Tel: 785-843-1234
www.cpcjournal.org
The Cleft Palate-Craniofacial Journal is an interdisciplinary international journal dedicated to current research on etiology, prevention, diagnosis, and treatment of craniofacial anomalies.
Nationwide Children’s Hospital
700 Children’s Drive
Columbus, OH 43205
Tel: 614-355-0884
www.nationwidechildrens.org
The Cleft Lip and Palate Center at Nationwide Children’s Hospital offers children and their families comprehensive care from a multi-disciplinary team of nationally recognized clinicians.

3885 Arapaho Road, Addison, TX 75001
Tel: 972-677-4735
osteomedcorp.com
OsteoMed is a leading global innovator, developer, manufacturer and marketer of specialty medical devices, surgical implants and powered surgical instruments.

PENTAX Medical
3 Paragon Drive, Montvale, NJ 07645
Tel: 973-628-6200
www.kaypentax.com
PENTAX Medical offers a full line of imaging and clinical assessment products for cleft palate and speech, used in leading clinics worldwide.

Southmedic Inc
50 Alliance Blvd, Barrie, Ontario, L4M 5K3 Canada
Tel: 705-720-1902
www.southmedic.com
Southmedic is a Canadian owned medical manufacturer of DynaCleft and Nasal Elevator products used in the pre-surgical treatment of cleft palate patients.

Disclaimer: While the above information is believed to be accurate, neither ACPA, CPF nor the National Office staff accept responsibility for any errors or omissions. ACPA and CPF do not endorse any product or service with respect to the above listed exhibitors.

The American Cleft Palate-Craniofacial Association extends a Special Thank You to:
KLS Martin Group, Jacksonville, FL • 3D Systems-Medical Modeling Inc, Golden, CO
Mohammad Mazaheri, MDD, MSc, Lancaster, PA • OsteoMed, Addison, TX • Stryker, Portage, MI
for their support at this year’s meeting.

NON-PROFIT EXHIBITORS
American Cleft Palate-Craniofacial Association
1504 East Franklin Street, Suite 102
Chapel Hill, NC 27514
Tel: 919.933.9044
www.acpa-cpf.org
Standards of care. Latest science. International journal, annual meeting and multidisciplinary networking. Membership in ACPA is essential to researchers and professionals dedicated to the care of persons with cleft palate and craniofacial anomalies.

Cleft Palate Foundation
1504 E. Franklin Street, Suite 102
Chapel Hill, NC 27514
Tel: 800-24-CLEFT
www.cleftline.org
Serving patients and families affected by cleft and craniofacial conditions since 1973 with connections to local teams and resources, feeding and counseling support, research funding, college scholarships, and more.

13th International Congress
Chennai, India
The 13th International Congress of Cleft Lip and Palate and Related Craniofacial Anomalies will be held on February 8-11, 2017, at the Radisson Blu Resort, Temple Bay, Mahabalipuram (Mamallapuram) near Chennai, India. Early bird registration discount is available until Jan 31, 2016. The Congress website is now open: https://cleft2017.org/
Summary of Events

PLEASE NOTE: Rooms are subject to change at the hotel’s discretion. Please check at the registration desk or listen for announcements of room changes.

SUNDAY, APRIL 19

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00PM-7:00PM</td>
<td>Registration</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td></td>
<td>Speaker Ready Room</td>
<td>Celebrity Planners Ofc</td>
</tr>
</tbody>
</table>

MONDAY, APRIL 20

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30AM-5:30PM</td>
<td>Registration</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td></td>
<td>Speaker Ready Room</td>
<td>Celebrity Planners Ofc</td>
</tr>
<tr>
<td>9:00AM-5:30PM</td>
<td>Pre-Con Symposium: What Is The ‘Ideal’ Treatment Outcome For A Child With A Cleft?</td>
<td>Celebrity E-H</td>
</tr>
<tr>
<td>10:30AM-11:00AM</td>
<td>Symposium Coffee Break</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td>12:30PM-2:00PM</td>
<td>Lunch Break (On Your Own)</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td>3:30PM-4:00PM</td>
<td>Symposium Coffee Break</td>
<td>Celebrity Foyer</td>
</tr>
</tbody>
</table>

TUESDAY, APRIL 21

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30AM-7:30PM</td>
<td>Registration</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td></td>
<td>Speaker Ready Room</td>
<td>Celebrity Planners Ofc</td>
</tr>
<tr>
<td>8:00AM-12:00PM</td>
<td>ACPA Primer on Team Care</td>
<td>Celebrity D</td>
</tr>
<tr>
<td>10:00AM-10:30AM</td>
<td>Symposium Coffee Break</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td>12:30PM-2:00PM</td>
<td>Lunch Break (On Your Own)</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td>12:00PM-1:00PM</td>
<td>ACPA Primer on Team Care Lunch (Optional)</td>
<td>Rancho-Mirage</td>
</tr>
<tr>
<td>12:00PM-1:30PM</td>
<td>ACPA/CPF Committee Chairs Meeting/Luncheon</td>
<td>Rancho-Mirage</td>
</tr>
<tr>
<td></td>
<td>(Open to 2015 and 2016 ACPA/CPF Chairs)</td>
<td></td>
</tr>
<tr>
<td>3:00PM-5:00PM</td>
<td>Exhibit Move-In</td>
<td>Celebrity Foyer</td>
</tr>
</tbody>
</table>

ACPA and CPF Committee Meetings

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00PM-6:00PM</td>
<td>AMERICLEFT - SURGEONS</td>
<td>Polo</td>
</tr>
<tr>
<td>1:30PM-2:30PM</td>
<td>JOURNAL ADVISORY</td>
<td>Oasis 5</td>
</tr>
<tr>
<td>1:30PM-2:30PM</td>
<td>AMERICLEFT - ALL</td>
<td>Oasis 4</td>
</tr>
<tr>
<td>1:30PM-2:30PM</td>
<td>ACPA ORGANIZATIONAL ALLIANCES</td>
<td>Oasis 6</td>
</tr>
<tr>
<td>1:30PM-2:30PM</td>
<td>ACPA HONORS & AWARDS</td>
<td>Oasis 7</td>
</tr>
<tr>
<td>1:30PM-3:30PM</td>
<td>CPF RESEARCH GRANTS</td>
<td>Oasis 1</td>
</tr>
<tr>
<td>1:30PM-3:30PM</td>
<td>CPF PUBLICATIONS</td>
<td>Oasis 2</td>
</tr>
<tr>
<td>2:30PM-4:00PM</td>
<td>ACPA MEMBERSHIP</td>
<td>Oasis 4</td>
</tr>
<tr>
<td>2:30PM-4:00PM</td>
<td>AMERICLEFT - PSYCH</td>
<td>Oasis 6</td>
</tr>
<tr>
<td>2:30PM-4:30PM</td>
<td>PARAMETERS</td>
<td>Oasis 7</td>
</tr>
<tr>
<td>2:30PM-4:30PM</td>
<td>AMERICLEFT - ORTHO</td>
<td>Oasis 5</td>
</tr>
<tr>
<td>3:30PM-4:00PM</td>
<td>CPF DPMF</td>
<td>Oasis 1</td>
</tr>
<tr>
<td>4:30PM-5:00PM</td>
<td>COMMITTEE COFFEE BREAK</td>
<td>Oasis Foyer</td>
</tr>
</tbody>
</table>

ACPA and CPF Committee Meetings (Cont.)

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00PM-6:00PM</td>
<td>ETHICS</td>
<td>Oasis 7</td>
</tr>
<tr>
<td>5:00PM-6:30PM</td>
<td>CPF SCHOLARSHIP</td>
<td>Oasis 1</td>
</tr>
<tr>
<td>5:00PM-6:30PM</td>
<td>EDUCATION</td>
<td>Oasis 2</td>
</tr>
<tr>
<td>5:00PM-6:30PM</td>
<td>INTERNATIONAL OUTREACH</td>
<td>Oasis 4</td>
</tr>
<tr>
<td>5:00PM-6:30PM</td>
<td>ACPA DATA STANDARDS</td>
<td>Oasis 6</td>
</tr>
<tr>
<td>5:30PM-6:30PM</td>
<td>ARCHIVES</td>
<td>Oasis 5</td>
</tr>
<tr>
<td>5:00PM-6:00PM</td>
<td>ACPA NEW MEMBER ORIENTATION</td>
<td>Rancho-Mirage</td>
</tr>
<tr>
<td>6:30PM-8:30PM</td>
<td>PRESIDENTS’ WELCOMING RECEPTION</td>
<td>Masters Plaza</td>
</tr>
<tr>
<td></td>
<td>CASH BAR/HORS D’ŒUVRES</td>
<td>(OUTDOOR EVENT)</td>
</tr>
</tbody>
</table>

Rooms

- **Celebrity Foyer**
- **Celebrity Planners Ofc**
- **Celebrity E-H**
- **Celebrity D**
- **Rancho-Mirage**
- **Polo**
- **Oasis 1**
- **Oasis 2**
- **Oasis 3**
- **Oasis 4**
- **Oasis 5**
- **Oasis 6**
- **Oasis 7**
- **Masters Plaza**
- **Oasis Foyer**
Summary of Events

Wednesday, April 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:30AM-6:30PM</td>
<td>Registration</td>
<td>Celebrity Foyer</td>
</tr>
</tbody>
</table>
| 7:00AM-8:00AM | Eye Openers – Group I
Course 1 (Journal Manuscript)
Course 2 (Commission on Approval of Teams)
Course 3 (VPD: Speech Assessment & Management)
Course 4 (American Left Project) | Celebrity Planners Ofc Mirage Oasis 4 Oasis 1-3 Oasis 5-7 |
| 7:30AM-8:20AM | Past Presidents’ Breakfast
Open only to past and present ACPA/CPF Presidents | Polo |
| 7:00AM-5:00PM | Exhibits | Celebrity Foyer |
| 7:00AM-1:00PM | Poster Session A | Celebrity Patio |
| 8:30AM-9:00AM | Opening Ceremony | Celebrity |
| 9:00AM-10:00AM | Keynote Session: Harold Slavkin, DDS | Celebrity |
| 10:00AM-10:30AM | Exhibits, Coffee Break
Poster Session A | Celebrity Foyer Celebrity Patio |
| 10:30AM-12:30PM | General Session I: The Best of the Oasis – The Leading Edge of Cleft and Craniofacial Care | Celebrity |
| 12:30PM-2:00PM | Lunch Break (On Your Own)
2016 Program Committee Luncheon/Meeting
Ethics Roundtable Discussion/Optional Lunch
Commission on Approval of Teams Luncheon/Meeting | Oasis 3 Rancho-Mirage Oasis 2 |
| 1:30PM-3:00PM | Poster Session B | Celebrity Patio |
| 2:00PM-3:00PM | General Session II: Team Care Panel | Celebrity |
| 3:00PM-6:30PM | Cleft Palate Craniofacial Journal (CPCJ) Editorial Bd Meeting | Rancho-Mirage |
| 3:15PM-4:45PM | Discipline Forums
Genetics/Pediatrics
Mental Health
Nursing/Coordination & Speech/Audiology
Oral-Maxillofacial Surgery
Orthodontics/Prosthodontics
Otolaryngology
Pediatric Dentistry
Plastic Surgery
Research | Oasis 1 Oasis 7 Rancho-Mirage Oasis 2 Oasis 4 Oasis 3 Oasis 5 Oasis 6 |
| 5:00PM-6:45PM | Ideas & Innovations (formerly Show & Tell) | Celebrity |
| 6:45PM-8:15PM | American Left Speech Meet & Greet | Rancho-Mirage |

Thursday, April 23

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:30AM-6:00PM</td>
<td>Registration</td>
<td>Celebrity Foyer</td>
</tr>
</tbody>
</table>
| 7:00AM-8:00AM | Eye Openers – Group II
Course 5 (Speech Therapy Techniques for Compensatory Articulation)
Course 6 (Feeding Problems & Solutions in Babies with Cleft)
Course 8 (Anatomy of the Unilateral Cleft Lip Nasal Deformity)
Course 9 (Making the Most of Prenatal Counseling Opportunities)
Course 10 (How to Use Buccal Myomucosal Flaps)
Course 10 (Preparing Your Patient For Jaw Surgery) | Oasis 4 Rancho-Polo Oasis 5-7 Mirage Celebrity A |
| 7:00AM-5:00PM | Exhibits | Celebrity Foyer |
| 7:00AM-6:00PM | Poster Session C | Celebrity Patio |
| 8:00AM-10:00AM | Junior Investigator Session | Celebrity D-E |
| 10:00AM-10:30AM | Junior Investigator Award Panel Meeting | Moroccan Boardroom |
THURSDAY, APRIL 23 — (CONTINUED)

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00AM-10:30AM</td>
<td>Exhibits, Coffee Break</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td></td>
<td>Poster Session C</td>
<td>Celebrity Patio</td>
</tr>
<tr>
<td>10:30AM-11:45AM</td>
<td>General Session III: Cleft & Craniofacial Care Outcomes</td>
<td>Celebrity D-E</td>
</tr>
<tr>
<td>12:00PM-2:00PM</td>
<td>ACPA/CPF Annual Awards Luncheon</td>
<td>Ambassador Ballroom</td>
</tr>
<tr>
<td>2:30PM-4:00PM</td>
<td>Study Sessions — Group I</td>
<td>OASIS 5-7</td>
</tr>
<tr>
<td></td>
<td>Course A (American Cleft Listener Ratings Protocol for SLPs)</td>
<td>Polo</td>
</tr>
<tr>
<td></td>
<td>Course B (Management and Surveillance Protocols for Complex CF)</td>
<td>OASIS 3</td>
</tr>
<tr>
<td></td>
<td>Course C (Narrative Video Therapy for Children & Adults)</td>
<td>Celebrity A</td>
</tr>
<tr>
<td></td>
<td>Course D (Academic and Clinical Training Guidelines for Team SLP)</td>
<td>OASIS 1-2</td>
</tr>
<tr>
<td></td>
<td>Course E (Practical Guidelines for Managing Patients W/ 22Q)</td>
<td>Celebrity B</td>
</tr>
<tr>
<td></td>
<td>Course F (Assessing Non-Adherence & Abuse in the CF Population)</td>
<td>Rancho</td>
</tr>
<tr>
<td></td>
<td>Course G (Making Sense of Nasal Air Emission)</td>
<td>Mirage</td>
</tr>
<tr>
<td></td>
<td>Course H (Endoscopic Craniosynostosis Surgery)</td>
<td>Celebrity A</td>
</tr>
<tr>
<td></td>
<td>Course I (Cleft Orthognathic Surgery)</td>
<td>OASIS 4</td>
</tr>
<tr>
<td></td>
<td>Course J (The Furlow Palatoplasty: Optimizing Outcomes)</td>
<td>Celebrity C</td>
</tr>
<tr>
<td>4:00PM-4:30PM</td>
<td>Study Sessions — Group II</td>
<td>OASIS 3</td>
</tr>
<tr>
<td></td>
<td>Course K (Speech Outcome Data: Techniques For Data Collection)</td>
<td>Celebrity C</td>
</tr>
<tr>
<td></td>
<td>Course L (Neonatal Mandibular Distraction Treatment Strategies)</td>
<td>OASIS 1-2</td>
</tr>
<tr>
<td></td>
<td>Course M (Surgical Management of VPD in 22Q for Surgeon & SLP)</td>
<td>OASIS 5-7</td>
</tr>
<tr>
<td></td>
<td>Course N (Nasopalatoplasty for Cleft)</td>
<td>Rancho</td>
</tr>
<tr>
<td></td>
<td>Course O (Nasopharyngoscopy: Successful Methods for Pre-K Kids)</td>
<td>Celebrity B</td>
</tr>
<tr>
<td></td>
<td>Course P ("Hands On" 3-D Ear Framework Carving Workshop)</td>
<td>Mirage</td>
</tr>
<tr>
<td></td>
<td>Course Q (Feeding & Swallowing Concerns in the Child with Cleft)</td>
<td>Polo</td>
</tr>
<tr>
<td></td>
<td>Course R (Dento-Skeletal Reconstruction of Patient W/Facial Cleft)</td>
<td>Celebrity C</td>
</tr>
<tr>
<td>6:00PM-7:30PM</td>
<td>INTL2017 Congress Task Force Meeting</td>
<td>Moroccan Boardroom</td>
</tr>
<tr>
<td>6:00PM-7:30PM</td>
<td>CPF Donor Reception (by invitation only)</td>
<td>Hospitality 517</td>
</tr>
</tbody>
</table>

FRIDAY, APRIL 24

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00AM-5:30PM</td>
<td>Registration</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td></td>
<td>Speaker Ready Room</td>
<td>Celebrity Planners Ofc</td>
</tr>
<tr>
<td>7:00AM-8:00AM</td>
<td>ASCFS Breakfast</td>
<td>OASIS Den</td>
</tr>
<tr>
<td>8:00AM-12:30PM</td>
<td>Poster Session D</td>
<td>Celebrity Patio</td>
</tr>
<tr>
<td>7:00AM-3:30PM</td>
<td>Exhibits</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td>8:00AM-9:00AM</td>
<td>Concurrent Session A: Quality of Life & Health Services</td>
<td>Celebrity F-H</td>
</tr>
<tr>
<td></td>
<td>Concurrent Session B: Speech-Language Pathology</td>
<td>Celebrity E</td>
</tr>
<tr>
<td></td>
<td>Concurrent Session C: ASCFS Linton A. Whitaker Lecture: Craniosynostosis</td>
<td>Celebrity D</td>
</tr>
<tr>
<td>9:00AM-10:00AM</td>
<td>ACPA Annual Business Meeting (Members Only)</td>
<td>Celebrity D</td>
</tr>
<tr>
<td>10:00AM-10:30AM</td>
<td>Exhibits, Coffee Break</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td></td>
<td>Poster Session D</td>
<td>Celebrity Patio</td>
</tr>
<tr>
<td>10:30AM-12:00PM</td>
<td>Concurrent Specialty Sessions (Group 1)</td>
<td>Celebrity D</td>
</tr>
<tr>
<td></td>
<td>Concurrent 1 (ASCFS 1)</td>
<td>Celebrity E</td>
</tr>
<tr>
<td></td>
<td>Concurrent 2 (Cleft Lip and Palate Surgery)</td>
<td>OASIS 1-4</td>
</tr>
<tr>
<td></td>
<td>Concurrent 3 (Speech)</td>
<td>Celebrity F-H</td>
</tr>
<tr>
<td></td>
<td>Concurrent 4 (Ortho/Dental)</td>
<td>Celebrity A-C</td>
</tr>
<tr>
<td></td>
<td>Concurrent 5 (Basic Research)</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Events

Friday, April 24 — (Continued)

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00PM-1:30PM</td>
<td>Lunch (On Your Own)</td>
<td>Rancho</td>
</tr>
<tr>
<td>12:00PM-3:00PM</td>
<td>ASCFS Luncheon/Business Meeting</td>
<td>Polo</td>
</tr>
<tr>
<td>1:00PM-5:00PM</td>
<td>Poster Session E</td>
<td>Celebrity Patio</td>
</tr>
<tr>
<td>1:30PM-3:00PM</td>
<td>Concurrent Specialty Sessions (Group 2)</td>
<td>Celebrity D</td>
</tr>
<tr>
<td></td>
<td>Concurrent 6 (ASCFS 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concurrent 7 (Cleft Lip And Palate Surgery 2)</td>
<td>Celebrity E</td>
</tr>
<tr>
<td></td>
<td>Concurrent 8 (Advances In Bioimaging)</td>
<td>Oasis 1-4</td>
</tr>
<tr>
<td></td>
<td>Concurrent 9 (Psychosocial)</td>
<td>Celebrity F-H</td>
</tr>
<tr>
<td></td>
<td>Concurrent 10 (Genetics)</td>
<td>Celebrity A-C</td>
</tr>
<tr>
<td>3:00PM-3:30PM</td>
<td>Exhibits, Coffee Break</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td></td>
<td>Poster Session E</td>
<td>Celebrity Patio</td>
</tr>
<tr>
<td>3:30PM-5:00PM</td>
<td>Concurrent Specialty Sessions (Group 3)</td>
<td>Celebrity D</td>
</tr>
<tr>
<td></td>
<td>Concurrent 11 (Mandible Microsoma)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concurrent 12 (Cleft Lip And Palate Surgery 3)</td>
<td>Celebrity E</td>
</tr>
<tr>
<td></td>
<td>Concurrent 13 (Speech Surgery)</td>
<td>Oasis 1-4</td>
</tr>
<tr>
<td></td>
<td>Concurrent 14 (Hospital Management)</td>
<td>Celebrity F-H</td>
</tr>
<tr>
<td></td>
<td>Concurrent 15 (Outcomes & International Issues)</td>
<td>Celebrity A-C</td>
</tr>
<tr>
<td>6:30PM-10:30PM</td>
<td>ACPA's 72nd Annual Gala – A Night At The Oasis</td>
<td>Masters Plaza</td>
</tr>
<tr>
<td></td>
<td>(Outdoor Event)</td>
<td></td>
</tr>
</tbody>
</table>

Saturday, April 28

<table>
<thead>
<tr>
<th>Time</th>
<th>Function</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30AM-10:00AM</td>
<td>Registration</td>
<td>Celebrity Foyer</td>
</tr>
<tr>
<td></td>
<td>Speaker Ready Room</td>
<td>Celebrity Planners Ofc</td>
</tr>
<tr>
<td>7:30AM-8:30AM</td>
<td>Concurrent Session D: First Year Care (Panel)</td>
<td>Celebrity A-C</td>
</tr>
<tr>
<td>8:30AM-9:30AM</td>
<td>Concurrent Session E: Cleft Care In The Developing World (Panel)</td>
<td>Celebrity E</td>
</tr>
<tr>
<td>7:30AM-9:30AM</td>
<td>Concurrent Session F: ASCFS</td>
<td>Celebrity D</td>
</tr>
<tr>
<td></td>
<td>Timing Of The Surgical Management Of Non-Syndromic Craniosynostosis</td>
<td>Oasis 1</td>
</tr>
<tr>
<td>11:30AM-6:00PM</td>
<td>American Cleft Speech</td>
<td></td>
</tr>
<tr>
<td>10:00AM</td>
<td>Meeting Adjourns</td>
<td></td>
</tr>
</tbody>
</table>
Making healthcare better.

One smile at a time.

a company dedicated to craniofacial surgery
experience the future of device technology with us

KLSmartin
GROUP

www.klsmartinnorthamerica.com